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ABSTRACT: In this study, incompressible, unsteady and 
turbulent flow over an airfoil with pitching and plunging 
oscillations is numerically studied in order to investigate 
the effect of reduced frequency on stability derivatives of 
oscillating airfoil. Linear k – ε model called Launder-Sharma and 
Rhie and Chow model are used for turbulence modeling 
and overcoming pressure checkerboard problem. This means 
that a co-located approach is proposed in this paper to study 
a moving grid problem, and the results demonstrate the high 
accuracy of the method. Control volume and Crank-Nicholson 
discretization method are also used for the numerical solution. 
It is shown that the longitudinal stability derivatives of plunging 
and pitching motions trend change intensively beyond the stall 
angle of attack while pitching rate has a completely opposite 
behavior. The results also show that increasing reduced 
frequency leads to stability reduction in plunging oscillation but 
it does not have significant effect on pitching oscillation case in 
pre-stall, stall and post-stall conditions. Grid convergence is 
examined to assess the accuracy of the numerical method 
that shows the high accuracy of it and this is a prominent 
achievement of the present study. The results of the proposed 
method in forces and moment show a good agreement with 
the experimental data.

KEYWORDS: Oscillating airfoil, Pitching oscillation, Plunging 
oscillation, Stability derivatives, Co-located method.
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INTRODUCTION

One of the most important problems in the aerodynamics 
theory is analyzing the stability of aircraft in order to be assured 
of its controllability and safety. The accurate prediction of 
moment and forces applied on aircraft plays a prominent 
role in determining its stability. Unsteady aerodynamics of 
oscillating airfoils has received attention in order to analyze 
the aerodynamic forces on aircrafts. 

Glauert (1935), in the 1930s, commenced studying oscillating 
airfoils. Following him, in 1940, Theodorsen and Garrick (1948) 
started much more accurate investigations on flutter problem of 
aircraft wings and paved the way for future studies on inviscid 
and incompressible flows over low-amplitude oscillating airfoils. 
Although plenty of numerical and experimental studies have 
been carried out to determine aerodynamic coefficients of 
static airfoils, more investigations on unsteady aerodynamics 
of oscillating airfoils are demanded. Among experimental 
studies, there are the papers by Panda and Zaman (1994), 
who investigated the flow field and estimation of lift from 
wake survey on a pitching airfoil. The Reynolds numbers were 
44,000 and 22,000 based on chord length and the airfoil was 
NACA 0012 with sinusoidal oscillation. Tolouei et al. (2004) 
studied the flow around a pitching airfoil in a frequency range 
of 0.022 – 0.066. They particularly investigated the pressure 
distribution of an oscillating airfoil. Sadeghi et al. (2010) also 
experimentally studied unsteady wake of a pitching airfoil and 
investigated pitching amplitude effect on the wake thickness.

Tuncer (1986), in the 1980s, started a numerical investigation 
on rapidly pitched airfoils. He studied unsteady fields over 
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pitching airfoil and dynamic stall in his paper. In the 1990s, 
Tuncer (1997) used overset grid method to numerically study 
a plunging airfoil and compared the results with single grid 
solution. In that paper, he used Baldwin-Brath as a turbulence 
modeling and the Mach 0.3 flow was considered. Guilmineau 
and Queutey (1999) numerically studied dynamic stall on 
different airfoil sections. They used Baldwin-Brath and k – ω 
SST turbulence models. These studies are devoted to find a 
numerical approach to deal with oscillating airfoils. However, 
there is still a compelling desire to achieve highly accurate 
numerical method on this subject. 

Additionally, plenty of experimental and numerical 
investigations have been carried out on stability derivatives 
and stability of aircrafts. Bak et al. (2000) experimentally 
investigated force coefficients and stability derivatives of 
NACA 63-415 airfoil in wind tunnel tests. Park et al. (2003) 
predicted stability coefficients using Euler equations in pitching 
motion. They used multi-grid method to calculate pitch and 
roll moments. Altun and İyigün (2004) measured the dynamic 
stability derivatives of a generic combat aircraft model in 
wind tunnel applying force oscillation on their model. Gopinath and 
Jameson (2005) used time-spectral method to study force 
and moment coefficients on 2-D and 3-D bodies. They used 
multi-grid method to solve Navier-Stokes equations for pitching 
airfoils and pitching wings. Schmidt and Newman (2010) also 
numerically investigated stability derivatives of a generic combat 
aircraft model. In recent studies Bhagwandin and Sahu (2014) 
numerically calculated stability derivatives for finned projectiles 
in subsonic and transonic regimes. Considering these papers, 
more investigations are required to study parameters that have 
significant effects on stability derivatives and oscillating motions 
such as oscillation amplitude or reduced frequency. 

In the present research, a co-located numerical method is 
proposed to a moving grid problem. The purpose is to accurately 
estimate the stability derivatives of an oscillating airfoil and 
investigate the reduced frequency effect on the aerodynamics 
of oscillating airfoils. The proposed method is highly accurate; 
therefore, it can be a solution for the most common issue of 
numerical methods in unsteady aerodynamics, which is low 
accuracy. Moreover, the proposed method is applied to a 
2-D problem and is able to be applied on more complex 3-D 
problems either. Numerical finite volume method with linear 
k – ε, Launder-Sharma turbulence model is used to study 
unsteady, incompressible and turbulent flow over a pitching 
and a plunging NACA 63-415 airfoil. After computing force 

and moment coefficient diagrams against time, longitudinal 
stability derivatives are obtained using curve fitting in both 
oscillations. This curve fitting is based on standard approaches 
that help the method to be able to model non-linear responses 
on flying vehicles. In another remarkable point of this numerical 
study, Rhie and Chow (1983) method is devoted to overcome 
pressure-velocity fluctuations (pressure checkerboard problem). 
After obtaining stability derivatives, the reduced frequency 
effects in pre-stall, stall and post-stall conditions on these 
derivatives are studied. Grid convergence index (GCI) and 
order of accuracy are also obtained to verify the numerical 
method and approve its accuracy.

GOVERNING EQUATIONS 

Continuity and momentum equations in Reynolds-Averaged 
Navier-Stokes (RANS) equations for unsteady incompressible 
flow are as follows:

where: t represents time; x is the space direction; U is the 
mean velocity; i and j are indexes, with i, j = 1, 2, 3; P is 
the pressure; Ui is the mean velocity of the flow; ρ is density; ν is 
viscosity; uiuj is called Reynolds stress terms that are unknowns 
of the problem and have to be modeled. 

Due to the oscillation motion, the source term Si  is zero. 
Boussinesq (1987) proposed a method in which Reynolds stress 
could be modeled using an equivalent turbulent viscosity and 
is expressed as:

(1)

(2)

(3)

(4)

where: δij is the Kronecker delta; vt is the turbulent kinematic 
viscosity and is calculated as:

where: Cμ and fμ values are given in Table 1.
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Coefficients Launder-Sharma model

Cε1 1.44
Cε2 1.92
σk 1
σε 1.3
Cμ 0.09

E 2vvt (δ2u/δy2)2

f1 1

f2 1 – 0.3exp(Ret 
2)

fμ exp(–3.4/(1+Ret/50)2)
Ret k2/vε

Table 1. Turbulence modeling coefficients.

In order to model Reynolds stress terms, linear k – ε 
turbulence model called Launder-Sharma is used. Turbulence 
kinetic energy (k) and dissipation rate (ε) equations are:

where: V and s are integral volume and surface, respectively; 
dnj is the differential component of surface normal vector. 

Note that, for a moving mesh problem, these equations are 
changed in some ways to model new control volume shapes. 
These corrections are made using Leibnitz rule. Let Wj be the 
boundary velocity of a control volume. Using Leibnitz rule, 
integrated continuity and momentum equations are considered 
just like the previous section; the only difference is that it is 
written for a moving mesh and a control volume.

(5)

(11)

(12)

(13)

(7)

(8)

(9)

where: σk, σε, Cε1, Cε2, f1, f2 and E are given in Table 1. 
In these relations, P* is the production term in turbulence 

flow and is calculated as:

where: Sij is the mean rate of stress tensor and is calculated 
this way:

NUMERICAL METHOD 

In order to solve flow equations in this paper, control volume 
method is used. For stationary control volumes, integrated 
continuity and momentum equations for incompressible flow are:

In the proposed numerical method, Crank-Nicholson method 
is used for discretization. To prevent pressure and velocity field 
fluctuation, Rhie and Chow method for incompressible flow 
is utilized. In this co-located method, velocity components on 
moving control volume boundaries are given as:

where: u shows the velocity on volume boundaries while 
U indicates the velocity at the center of the control volume; 
e indexes are related to the east of the control volume and 
E indexes are related to the neighboring control volume 
centers; P indexes indicate the particular control volume 
that is being solved. 

Figure 1 shows the scheme of a cell.
Transporting velocity is also modeled to prevent pressure 

checkerboard problem:

(6)

(10)

(14)
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Comparing different solutions, the most appropriate value 
for k΄ is obtained; k΄ = 1 is selected for Eq. 14 for an accurate 
and smooth solution. For boundary conditions in this numerical 
method, at inlet, velocity, kinetic turbulent energy, dissipation rate, 
and molecular viscosity are set, and, at outlet, pressure is applied.

where: α · is the variation rate of angle of attack and q is 
the pitch rate; Cma is the pitch damping that can be neglected 
because of its small value. 

Substituting Eq. 15 for α(t) in Eq. 17, Eq. 18 is obtained:

(21)

(15)

(16)

(17)

(18)

(19)

(20)

SIMULATION OF PITCHING AND 
PLUNGING OSCILLATIONS

In order to calculate longitudinal stability derivatives, 
unsteady aerodynamics are considered. Moreover, force and 
moment coefficients against time in different angles of attack 
have to be computed. Two types of oscillating motions are used 
in this paper: (1) pitching and (2) plunging. Thus, a harmonic 
oscillating motion with constant amplitude is applied on airfoil. 
Pitching motion with sinusoidal variation in angle of attack is 
described as:

where: αm is the mean angle of attack; αA is the oscillation 
amplitude; ω is the circular frequency and is determined using 
the reduced frequency relation kc = ωl/2V , where l is the chord 
length and V is the freestream velocity. 

In addition, for plunging oscillation, the equation of motion is:

After applying pitching and plunging oscillations to the 
airfoil, force and drag coefficients are computed in time; then, 
using curve fitting, the following equation is assumed for the 
pitching moment:

where: CmA is the amplitude; Cm0 is the initial pitching moment; 
δ is the phase difference that is assumed by moment coefficient 
variations and IEEE-std-1050 standard for curve fitting. 

Comparing Eq. 19 with Eq. 18, the following equation is 
obtained: 

Additionally, in order to use the previous equation for 
plunging airfoil, an equivalent angle of attack is defined:

Figure 1. Control volume and its direction indexes. W and E 
indicate the center of control volumes on the western and eastern 
sides of the cell, respectively; w and e indicate the boundaries on 
the western and eastern sides of the cell, respectively.

W

Middle node

E

ew

This way, damping stability derivatives Cmα · + Cmq are 
obtainable using curve fitting. Noting that the pitch rate is 
negligible for plunging airfoil, Cmα · can be calculated for plunging 
airfoil and net value of Cmq is achieved.

GRID AND INITIAL CONDITIONS

Airflow Reynolds number is . The NACA 63-415 airfoil 
that is used in this study has chord length of 0.6 m and the 
inlet air velocity is 40 m·s–1. Density is considered constant 
and is set at 1.225 kg·m–3; the pressure at the outlet is set at 
1 bar. Since the reduced frequency effects on the stability 
longitudinal derivatives are investigated, constant mean angle 
of attack and oscillation amplitude are determined, and the 
values are 1.5° and 1.3°, respectively. The reduced frequency 
interval for this study is 0.09 to 0.16, C-type grid is used for 
the airfoil and the domain is shown in Fig. 2. Three different 

where: a is the mean oscillation amplitude.
Using Taylor series for pitching moment and neglecting 

higher-than-2nd-order derivative terms, the pitching moment 
can be described based on reduced frequency for pitching airfoil 
(Ronch et al. 2011):
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Figure 2. C-type mesh for numerical study. 
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grids with 11,200, 21,600, and 25,200 cells are used for grid 
refinement. The 21,600-cells grid is used for numerical solution. 
Note that the y plus value for the grid is about 1.1 and the wall 
distance is about 10−5 m. The grid convergence study has also 
been done and it is proposed in the next section. The time 
step for transient study is 0.001 s.

dV 1.8E-12
1.77586E-12
1.75172E-12
1.72759E-12
1.70345E-12
1.67931E-12
1.65517E-12
1.63103E-12
1.6069E-12
1.58276E-12
1.55862E-12
1.53448E-12
1.51034E-12
1.48621E-12
1.46207E-12
1.43793E-12
1.41379E-12
1.38966E-12
1.36552E-12
1.34138E-12
1.31724E-12
1.2931E-12
1.26897E-12
1.24483E-12
1.22069E-12
1.19655E-12
1.17241E-12
1.14828E-12
1.12414E-12
1.1E-12

Figure 3. Contours of velocity magnitude variation after 3 s 
(dV = V − 0).

GRID CONVERGENCE STUDY
For grid study convergence, Richardson extrapolation is 

used to calculate a higher-order estimation of the flow fields 
from a series of lower-order discrete values (f1, f2, …, fn). For 
the case of grid refinement study, the value estimated from the 
Richardson extrapolation is the one that would result when 
the cell grid size is tended to zero. 

(22)

(23)

(24)

Considering h1, h2 2 grid spacing, with h1 being the finer 
grid, r is the grid refinement ratio, r = h2/h1; p΄ is the order of 
accuracy of the numerical method and 3 different solutions are 
needed for this term, which is calculated as (Stern et al. 2001):

Roache (1994) also suggests a GCI to provide a consis-
tent manner in reporting the results of grid convergence. 
To compute the GCI, 3 levels are recommended in order to 
accurately estimate the order of convergence and to check 
that the solutions are within the asymptotic range of con- 
vergence:

RESULTS AND DISCUSSION
GEOMETRIC CONSERVATION LAW

Since a moving grid is considered in the present paper, 
in this section, a test case is introduced to demonstrate the 
correct performance of the algorithm on moving grids. 
The case is defined to prove that grid motions would not 
affect the solution. For this purpose, the fluid is initially 
stationary with the following parameters: P = 1 bar and 
ρ = 1.225 kg·m–3. With these initial conditions, fluid flow 
equations are solved in the domain while the elements 
oscillate with the motion of displacement. After 3 s, 
with the time step of 0.001 s, the contours of dV (V − 0), 
variation of velocity magnitude after 3 s, that is physically 
expected to remain zero, are plotted in Fig. 3. As can be 
seen, they are almost zero. This demonstrates the correct 
implementation of Geometric Conservation Law in the 
solution. 

Table 2 shows grid convergence study results for the 
proposed numerical method. Since moment coefficient is a 
significant parameter in this paper, it is used to study grid 
convergence and obtain the order of accuracy. The convergence 
is studied for moment coefficient in 2.1o and 0.5o angles of attack. 
Subscripts 3, 2 and 1 represent, respectively, 11,200-, 21,600- and  
25,200-cells grids and εij = fi – fj.
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As Table 2 shows, the order of accuracy for the numerical 
method is about 1.92 while the theoretical order of accuracy 
is 2. The difference is most likely due to grid stretching or 
turbulence modeling. There is a reduction in GCI value for 
the successive grid refinements (GCI12 < GCI23). The GCI for 
finer grid (GCI12) is relatively low if compared to the coarser 
grid (GCI23), indicating that the dependency of the numerical 
method on the cell size has been reduced. Additionally, as the 
GCIreduction from the coarser grid to the finer grid is relatively 
high, the grid independent solution can be said to have been 
nearly achieved. Further refinement of the grid will not give 
much change in the results. So, it can be said that the solution 
on the proper grid resolution is nearly grid-independent.

Figure 4 indicates the independency of solution from grids 
for lift and moment coefficients of a plunging airfoil. In Fig. 5, lift 

and drag coefficient diagrams in different angles of attack for 3 
different time steps are shown to demonstrate the independency 
of results from time step. As Fig. 5 shows, 0.001 s is assumed for 
the time step of the solution. Note that the results are shown for 
a pitching airfoil in this figure.

NUMERICAL RESULTS
As Figs. 4 and 5 show, lift, drag and moment coefficient 

diagrams against angle of attack have hysteresis loop in 
a 0.25 to 2.75 interval. Due to sinusoidal oscillations in airfoil 
motion, force and moment coefficients have hysteresis loops 
in particular intervals of angles of attack for both pitching and 
plunging airfoils. Figure 6 shows forces and moment coefficients 
for mean angle of attack of 1.5°, reduced frequency of 0.09 and 
pitching amplitude of 1.3° for a pitching NACA 63-415 airfoil. 
Hysteresis loops are clearly observed in these diagrams. This 
figure also compares the results of this research with wind 
tunnel test results found in Bak et al. (2000) to validate the 
proposed numerical method. It is shown that the results of 
the present study have good accuracy in comparison with the 
existing experimental results. Numerical method errors are 
3.2, 1.4 and 3.9 percent for lift, moment and drag coefficient, 

Angle 
of 

attack

ε12 ε23 fexact
GCl12 

(%)

GCl23 

(%)
p’

0.5o 0.0005 0.002 −0.076 0.312 1.203 1.926

2.1o 0.0008 0.003 −0.078 0.455 1.757 1.931

Table 2. Grid convergence index and order of accuracy for Cm .

Figure 4. Cm and Cl against angle of attack for different grids. Figure 5. Cd and Cl against angle of attack for different time steps. 
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Figure 7. Variation of longitudinal stability derivatives with 
angle of attack.
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respectively. These errors are calculated by comparing areas 
of hysteresis loops.

In order to predict the time variation of longitudinal stability 
derivatives, force and moment diagrams against time have 
to be determined. Curve fitting these diagrams using Eq. 19, 
longitudinal stability derivatives can be calculated by Eq. 20. 
After this procedure, longitudinal stability derivative variations 
with different angles of attack can be obtained. Figure 6 shows 
the variation for longitudinal stability derivatives in different 
angles of attack. For this case, the mean angle of attack is 
1.5° and the reduced frequency is 0.09 for both pitching and 
plunging airfoils. Table 3 also shows curve fitting data for stability 
derivatives in an angle of attack equal to 1.5°.

Oscillation
Phase 

difference (δ) CmA Cmα + Cmq

Pitching −0.949 0.002 −0.000

Plunging −0.812 0.003 −0.172

Figure 6. Comparison of present numerical and 
experimental results (Bak 2000).
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0.65
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Experiment

Present study

Angle of attack [deg]

C d
C l

C m

0 0.5 1 1.5 2 2.5
-0.02

0

0.02

0.04

Table 3. Curve fitting data for angle of attack of 1.5°.

Longitudinal stability derivative variations for pitching   
(Cmα ·+ Cmq) and plunging airfoil (Cmα ·) with angle of attack are 
shown in Fig. 7. Numerical results show that the longitudinal 
stability derivatives of pitching and plunging airfoils have the 
same trend in different angles of attack, whilst the longitudinal 
stability of pitch rate (Cmq) has a completely different attitude 
in pre- and post-stall conditions. In other words, longitudinal 
stability derivatives for pitching and plunging airfoils values 
are increased in pre-stall condition and decreased in post-stall 
condition. Longitudinal stability derivatives of pitch rate have 
an opposite trend.

Figure 7 also shows that longitudinal stability derivatives of 
pitching and plunging airfoils have negative signs in all angles 
of attack, which describes the longitudinal stability in pitching 
and plunging motions. Longitudinal stability derivatives of 
pitch rate have negative sign after stall angle of attack and 
become more stable. In addition to that, in high angles of attack, 
longitudinal stability derivative values of plunging motion are 
positive, which means that this motion becomes unstable in 
post-stall condition. Longitudinal derivative values of pitching 
motion are still negative in this area, which indicates its stability. 

Since reduced frequency is one of the main elements in 
oscillating motions, the effect of this parameter on stability 
derivatives of a plunging and pitching airfoil is investigated in 
this paper. Figures 8 to 10 show the reduced frequency effect 
on longitudinal stability derivatives. The reduced frequency is 
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Figure 9. Reduced frequency effect on longitudinal stability 
derivatives in stall condition.

Figure 10. Reduced frequency effect on longitudinal stability 
derivatives in post-stall condition.

Figure 8. Reduced frequency effect on longitudinal stability 
derivatives in pre-stall condition.
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increased from 0.09 to 0.16 and longitudinal stability derivative 
variations and trends are studied in 3 different conditions: pre-
stall, stall and post-stall. 

For these 3 conditions, 3 particular mean angles of attack 
are determined: 1.5°, 11° and 18° for pre-stall, stall and post-
stall conditions, respectively. As shown in Fig. 8, by increasing 

the reduced frequency from 0.09 to 0.16, longitudinal stability 
derivative values for plunging airfoil move toward positive 
values, which leads to unstable oscillations in higher reduced 
frequencies. This can be justified by fluid displacement effect 
on airfoil. On the other hand, the increasing in the reduced 
frequency does not have significant influence on longitudinal 
stability derivatives of pitching airfoil. Longitudinal stability 
of pitch rate is also stable in the studied reduced frequency 
interval. In plunging motion, by increasing the reduced 
frequency to 0.06, negative damping effects of wake on 
moment coefficient become evident and, by increasing 
further, these effects are more severe. In pitching airfoil, 
longitudinal stability derivatives in low reduced frequency 
have a different trend in comparison to plunging airfoil due 
to the pitch rate.

In Fig. 9, which is stall condition, with mean angle of 
attack equal to 11°, the situation is as the same as the pre-stall 
condition. The only notable difference is that the variation of 
longitudinal stability derivatives of plunging and pitching airfoils 
is not significant as in the pre-stall condition. 

The mean angle of attack equal to 18° shows the post-stall 
condition in Fig. 10. In this condition, as in the previous ones, 
longitudinal stability derivatives of plunging and pitching 
airfoils have negative signs, which means they are stable. 
However, by increasing the reduced frequency, longitudinal 
stability derivatives of plunging airfoil move toward the 
positive values and become more unstable. It is important 
to note that the variation of longitudinal stability derivatives 
of plunging airfoil is more than that of the pitching airfoil. 
In other words, plunging airfoil is more sensitive to reduced 
frequency than pitching airfoil.

Studying pitch rate in all of the conditions shows the reduced 
frequency effect on the stability of the oscillation. Figure 8 shows 
that the pitch rate effect is elevated by increasing the reduced 
frequency and the negative value of Cmq is also increased, which 
means it is always in stable condition.

CONCLUSION

A numerical method was proposed in this paper to predict 
the stability derivatives of a NACA 63-415 airfoil under pitching 
and plunging oscillations and to study the effect of one of the 
most important oscillation parameters, which is the reduced 
frequency. This method was a co-located approach and was 
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utilized to solve a moving grid problem. Grid convergence was 
also examined for numerical method and results indicated that 
the grid convergence index was below 5%, which demonstrates 
the high accuracy of the numerical approach. The Reynolds 
number was 1.6 × 106, linear k – ε model was used as turbulence 
model and Rhie and Chow method was also devoted to overcome 
pressure checkerboard problem. 

The paper investigated the behavior of stability derivatives in 
different conditions. Furthermore, it is shown that the stability 
of a plunging airfoil was decreased by increasing the reduced 
frequency, primarily in pre- and post-stall conditions. Finally, 
the research shows that the pitching airfoil stability is relatively 
independent of reduced frequency especially in low angles of 
attack due to the existence of the pitch rate in this motion.
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