Trajectory Control During an Aeroassisted Maneuver Between Coplanar Circular Orbits

Authors

  • Willer Gomes dos Santos Instituto Nacional de Pesquisa Espaciais (INPE) São José dos Campos/SP
  • Evandro Marconi Rocco Instituto Nacional de Pesquisa Espaciais (INPE) São José dos Campos/SP
  • Valdemir Carrara Instituto Nacional de Pesquisa Espaciais (INPE) São José dos Campos/SP

Keywords:

Aeroassisted maneuvers, Orbital dynamic, Trajectory control.

Abstract

This paper presents the simulation results of an aeroassisted maneuver around the Earth, between coplanar circular orbits, from a geostationary orbit to a low orbit. The simulator developed considers a reference trajectory and a trajectory perturbed by external disturbances combined with non-idealities of sensors and actuators. It is able to operate in closed loop, controlling the trajectory (drag-free control) at each instant of time using a Proportional-Integral-Derivative (PID) controller and propulsive jets. We adopted a spacecraft with a cubic body composed of two rectangular plates arranged perpendicular to the velocity vector of the vehicle. Propulsive jets are applied at the apogee of the transfer orbit in order to keep the perigee altitude and control the rate of heat transfer suffered by the vehicle during atmospheric passage. A PID controller is used to correct the deviation in the state vector and in the keplerian elements. The U.S. Standard Atmosphere is adopted as the atmospheric model. The results have shown that the aeroassisted transfer presents a smaller fuel consumption when compared to a Hohmann transfer or a bi-elliptic transfer.

Downloads

Published

2014-05-28

Issue

Section

Original Papers