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ABSTRACT: In this paper, an analytical solution for time-fixed optimal low-thrust limited-power transfers (no rendezvous) 
between elliptic coaxial non-coplanar orbits in an inverse-square force field is presented. Two particular classes of 
maneuvers are related to such transfers: maneuvers with change in the inclination of the orbital plane and maneuvers 
with change in the longitude of the ascending node. The optimization problem is formulated as a Mayer problem 
of optimal control with the state defined by semi-major axis, eccentricity, inclination or longitude of the ascending 
node, according to the class of maneuver considered, and a variable measuring the fuel consumption. After applying 
Pontryagin’s maximum principle and determining the maximum Hamiltonian, short periodic terms are eliminated through 
an infinitesimal canonical transformation. The new maximum Hamiltonian resulting from this canonical transformation 
describes the extremal trajectories for long duration transfers. Closed-form analytical solution is then obtained 
through Hamilton-Jacobi theory. For long duration maneuvers, the existence of conjugate points is investigated through 
the Jacobi condition. Simplified solution is determined for transfers between close orbits. The analytical solution is 
compared to the numerical solution obtained by integration of the canonical system of differential equations describing 
the extremal trajectories for some sets of initial conditions. Results show a great agreement between these solutions 
for the class of maneuvers considered in the analysis. The solution of the two-point boundary value problem of going 
from an initial orbit to a final orbit, based on the analytical solution, is also discussed.

kEYWORDS: Low-thrust limited-power trajectories, Transfers between non-coplanar orbits, Optimal space trajectories.

INTRODUCTION

In the last thirty years, important space missions have made use of low-thrust propulsion systems. Th e two pioneer missions 
were NASA-JPL Deep Space 1 and ESA’s SMART-1. Deep Space 1 was the fi rst interplanetary spacecraft  to utilize Solar Electric 
Propulsion. It was developed by NASA in the New Millennium Program to testing new technologies for future Space and Earth 
Science Programs. It was launched on October 24, 1998, and its mission terminated on December 18, 2001, when its fuel supply 
exhausted. SMART-1 was the fi rst of a series of ESA’s Small Missions for Advanced Research in Technology. It was used to test 
solar electric propulsion and other deep-space technologies. It was launched on September 27, 2003, and its mission ended on 
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September 3, 2006, when the spacecraft, in a planned maneuver, impacted the lunar surface. Interesting details about these space 
missions can be found in Rayman et al. (2000), Racca et al. (2002) and Camino et al. (2005).

Low-thrust electric propulsion systems are characterized by high specific impulse and low-thrust capability (the ratio between 
the maximum thrust acceleration and the gravity acceleration on the ground is small, between 10-4 and 10-2) and have their 
greatest benefits for high-energy planetary missions (Marec 1979; Racca 2003). Several researchers have obtained numerical 
and analytical solutions for several maneuvers involving specific initial and final orbits and specific thrust profiles (Gobetz 1964, 
1965; Edelbaum 1964, 1965, 1966; Marec and Vinh 1977, 1980; Haissig et al. 1993; Geffroy and Epenoy 1997; Sukhanov 2000; 
Kiforenko 2005; Bonnard et al. 2006; da Silva Fernandes and das Chagas Carvalho 2008; Jamison and Coverstone, 2010; Jiang 
et al. 2012; Huang 2012; Quarta and Mengali 2013). In the most of the analytical studies, averaging techniques are applied and 
solutions of the averaged equations are obtained such that only secular behavior of the optimal solutions is discussed. Few works 
discuss the inclusion of periodic terms, which are, in general, considered only for transfers between close orbits (Gobetz 1964, 
1965; Edelbaum 1965, 1966).

In two previous works (da Silva Fernandes and das Chagas Carvalho 2008; da Silva Fernandes et al. 2015), the authors presented 
complete analytical solutions based on canonical transformation, which include the short periodic terms, for the problem of 
optimal time-fixed low-thrust limited-power transfers between arbitrary elliptic coplanar orbits and between coplanar orbits 
with small eccentricities. 

The main goal of this work is to extend the previous results and develop an approximated analytical solution, which includes short 
periodic terms, for the problem of optimal time-fixed low-thrust limited-power transfers (no rendezvous) between non-coplanar 
coaxial orbits in a Newtonian central gravity field. Two particular classes of maneuvers are related to such transfers: maneuvers with 
change in the inclination of the orbital plane and maneuvers with change in the longitude of the ascending node. The optimization 
problem is formulated as a Mayer problem of optimal control theory with semi-major axis, eccentricity, inclination or longitude of 
the ascending node, and a variable measuring the fuel consumption as state variables. Both maneuvers are described by a simplified 
set of the well-known Gauss equations of Celestial Mechanics. Pontryagin’s maximum principle (Pontryagin et al. 1962) is applied to 
determine candidates for optimal trajectories, called extremals. After applying the set of necessary conditions provided by Pontryagin’s 
maximum principle and determining the maximum Hamiltonian which describes the extremal trajectories, the short periodic terms 
are eliminated through an infinitesimal canonical transformation built using Hori method – a perturbation canonical method based 
on Lie series (Hori 1966). The new maximum Hamiltonian resulting from the infinitesimal canonical transformation describes the 
extremal trajectories for long duration transfers. A set of first integrals is derived for the canonical system of differential equations 
governed by the new Hamiltonian function. Closed-form analytical solutions are then obtained through Hamilton-Jacobi theory. 
The separation of variables technique is applied to solve the Hamilton-Jacobi equation. For long duration maneuvers, the existence 
of conjugate points is investigated through the Jacobi condition. An iterative algorithm based on the first-order analytical solution is 
described for solving the two-point boundary value problem of going from an initial orbit to a final orbit. For transfers between close 
orbits a simplified solution is straightforwardly derived by linearizing the new Hamiltonian and the generating function obtained 
through the Hori method. This simplified solution is given by a linear system of algebraic equations in the initial value of the adjoint 
variables, such that the two-point boundary value problem can be solved by simple techniques. The analytical solutions are compared 
to the numerical solutions obtained by integration of the canonical system of differential equations describing the extremal trajectories 
for some sets of initial conditions.

It is noteworthy to mention that the results presented in this paper and obtained through canonical transformation theory 
are a complement of the works by Edelbaum (1965) and Marec and Vinh (1977, 1980).

FORMULATION OF THE OPTIMIZATION PROBLEM 

A low-thrust limited-power propulsion system – LP system – is characterized by low-thrust acceleration level and high specific 
impulse. For such a system, the fuel consumption is described by the variable J defined as (Marec 1979):
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where: γ is the magnitude of the thrust acceleration vector γ, used as a control variable. The consumption variable J is a monotonic 
decreasing function of the mass m of the space vehicle,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where: Pmax is the maximum power and m0 is the initial mass. The minimization of the final value of the fuel consumption, Jf, is 
equivalent to the maximization of mf .

The motion of a space vehicle P, powered by a limited-power engine in an inverse-square force field, can be described by the 
well-known Gauss equations of Celestial Mechanics. These equations are given by Battin (1987):  

where: a, e, I, Ω, ω, M are the classical orbital elements: a is the semi-major axis, e is the eccentricity, I is the inclination of 
the orbital plane, Ω is the longitude of the ascending node, ω is the argument of periapsis, and M is the mean anomaly; and 
r is the radial distance. R, S and W are, respectively, radial, circumferential and normal component of the thrust acceleration. 
E is the eccentric anomaly, f is the true anomaly and n is the mean motion, n2 a3 = µ, with µ denoting the gravitational 
parameter.

According to Marec and Vinh (1977, 1980), the optimal transfers between coaxial orbits are coaxial transfers, that is, the 
argument of periapsis does not change during the transfer, and two classes of maneuvers are related to the transfers between 
non-coplanar coaxial orbits: change in the inclination of the orbital plane and change in the longitude of the ascending node. For 
the first maneuver, ω = 0o or ω = 180o and Ω = 0o , and, for the second one, ω = 90o or 270o and I = 90o. A sketch of the geometric 
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configuration of the initial orbit and the final orbit for these maneuvers is represented in Fig.1 (only “visible” portion of the orbits 
above the reference plane is represented). 

Figure 1. Geometric configuration of the initial orbit and the final orbit: (a) represents the maneuver with change in the 
inclination of the orbital plane and (b) represents the maneuver with change in the longitude of ascending node.

Therefore, at time t, the state of a space vehicle P is defined by five variables: a, e, I or W, M and J. The inclination of the orbital 
plane or the longitude of the ascending node is used according to the class of maneuver considered in the analysis.

The optimization problem can be formulated as a Mayer problem of optimal control as follows:
It is proposed to transfer the space vehicle from the initial state (a

0
, e

0
, I

0
 or W

0
, M

0
, 0) at time t

0
 to the final state 

 
(af , ef , If or Wf , 

Mf , Jf ) at time tf 
, such that the final consumption variable Jf is a minimum. The duration of the transfer tf 

– t
0 

 is specified. For 
simple transfers (no rendezvous) the mean anomaly at time tf is free. 

So, taking into account the characterization of the two classes of maneuvers related to the transfers between non-coplanar 
coaxial orbits, described in the preceding paragraphs, one finds that the state equations are given by Gauss’ equations for 
semi-major axis, eccentricity and mean anomaly, as defined by Eqs. 2, 3 and 7, respectively, and, by the following differential 
equations:

(8)

(9)

The variable θ is introduced to denote the inclination of the orbital plane or the longitude of the ascending node according to 
the maneuver considered. The upper (lower) sign refers to the maneuver with change in the inclination of the orbital plane with 
ω = 0o (ω = 180o) or maneuver with change in the longitude of the ascending node with ω = 90o (270o ). Note that Eq. 8 is derived 
straightforwardly form Eqs. 4 or 5 following the conditions described for each maneuver – maneuver with change in the inclination 
of the orbital plane or maneuver with change in the longitude of the ascending node – as described in a preceding paragraph.

According to the Pontryagin’s maximum principle (Pontryagin et al. 1962), the adjoint variables (Lagrange multipliers associated 
to the constraints represented by state equations) pa, pe , pθ , pM and pJ are introduced and the Hamiltonian function H (a, e, θ, M, 
J, pa, pe , pθ , pM, pJ , R, S, W) is formed using the right-hand side of Eqs. 8 and 9, 
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The control variables R, S and W must be selected from the admissible controls such that the Hamiltonian function reaches 
its maximum along the optimal trajectory. Thus, the components of the optimal thrust acceleration are given by:

(10)

(11)

(12)

(13)

(14)

(15)

(16)

These equations can be simplified if it will be taken into account that the adjoint variable pJ  is a first integral of the canonical 
system governed by the maximum Hamiltonian; that is, pJ is a constant whose value is obtained from the transversality condition, 
pJ  (tJ ) = –1. Accordingly, pJ  (tJ) = –1. So, introducing this result into Eqs. 11 and 12, one finds the components of the optimal 
thrust acceleration.

Introducing Eqs. 11-13 into the Eq. 10, one finds:

where H0 denotes the undisturbed Hamiltonian and H* γ is the part related to the optimal thrust acceleration. These functions are 
expressed by:

±
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It also be noted that the part of the maximum Hamiltonian related to the optimal thrust acceleration can be expressed in a 
compact form:

This result is used to compute the fuel consumption by simple quadrature of Eq. 9. 
The problem of determining a first-order analytical solution of the system of differential equations governed by the maximum 

Hamiltonian H* is solved by means of the theory of canonical transformations as it will be described later. 

FIRST-ORDER ANALYTICAL SOLUTION

A first-order analytical solution of the canonical system governed by the maximum Hamiltonian H* is derived by means 
of canonical transformation theory. Firstly, the short periodic terms are eliminated through an infinitesimal canonical 
transformation built using Hori method (Hori 1966). Hori method is a perturbation method based on Lie commutation 
theorem (Lie 1888) and it provides an explicit canonical transformation between old and new canonical variables, differently 
from the classical perturbation methods based on Hamilton-Jacobi theory, in which the transformation of variables 
involves new and old variables in a mixed form and requires the solution of an inversion problem to get the final form of 
the transformation of variables. We note that the new maximum Hamiltonian resulting from the infinitesimal canonical 
transformation describes the extremal trajectories for long duration transfers. A set of first integrals is then derived for the 
canonical system of differential equations governed by the new Hamiltonian function and a closed-form analytical solution 
is obtained through Hamilton-Jacobi theory. The separation of variables technique is applied to solve the Hamilton-Jacobi 
equation (Lanczos 1970).

ELIMINATION OF SHORT PERIODIC TERMS
In order to eliminate the short periodic terms from the maximum Hamiltonian, it is assumed that the undisturbed Hamiltonian 

H0 is of zero order and the disturbing part H* 
γ  is of the first-order in a small parameter defined by the magnitude of the thrust 

acceleration.
Consider an infinitesimal canonical transformation,

The new variables are designated by the prime. 
According to the algorithm of Hori method, at order 0, one finds:

F0 denotes the new undisturbed Hamiltonian. 
In order to determine the higher order terms of the new Hamiltonian and the generating function of the canonical 

transformation, the algorithm proposed by da Silva Fernandes (2003) is applied. According to this algorithm, based on 
the method of variation of constants, the Poisson brackets involving the generating function and the new undisturbed 
Hamiltonian, that defines the general equation of the algorithm, is converted into a time partial differential equation. This 
procedure simplifies the determination of the new Hamiltonian and the generating function, since it eliminates the Hori 
auxiliary parameter.

So, consider the canonical system described by F0:
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general solution of which is given by:

(17)

(18)

The subscript 0 denotes the constants of integration.
Introducing this general solution into the equation of order 1 of the algorithm of Hori method, one finds: 

with the functions H* γ written in terms of the constants of integration.
Following the proposed algorithm, one finds:

Terms factored by p’M have been omitted in equations above, since only transfers (no rendezvous) are considered. Note that p’M  

is a first integral of the average canonical system; that is, p’M  is constant and its value is computed from the transversality condition 
which gives p’M (tf)= 0 for simple transfers (the final position of the space vehicle is free). This result simplifies the expressions of 
the new Hamiltonian and the generating function as given by equations above.

9 
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Introducing this general solution into the equation of order 1 of the algorithm of Hori 
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Terms factored by Mp  have been omitted in equations above, since only transfers (no 
rendezvous) are considered. Note that Mp  is a first integral of the average canonical system; 
that is, Mp  is constant and its value is computed from the transversality condition which gives 

  0M fp t   for simple transfers (the final position of the space vehicle is free). This result 
simplifies the expressions of the new Hamiltonian and the generating function as given by 
equations above. 

A SET OF FIRST INTEGRALS OF THE AVERAGED CANONICAL SYSTEM 

Consider the Mathieu transformation (Lanczos 1970) defined by the following equations 
 
 a a         a ap p                                                                       (19) 
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A SET OF FIRST INTEGRALS OF THE AVERAGED CANONICAL SYSTEM

Consider the Mathieu transformation (Lanczos 1970) defined by the following equations:

(19)

(20)

(21)

(22)

(23)

(24)

(25)

The Hamiltonian function F1 is invariant with respect to this transformation,

The averaged canonical system governed by the Hamiltonian function F’’ has a set of first integrals, which can be derived 
straightforwardly from the differential equations as described by Pines (1964) and Edelbaum and Pines (1970). 

The first integrals are given by the following equations:

E, Ci, i = 1,2 are constants.

CLOSED-FORM SOLUTION OF THE CANONICAL SYSTEM GOVERNED BY HAMILTONIAN 
FUNCTION F’’  

Consider the canonical transformation, 

defined by a generating function W such that the constants C1, C2 and E become the new generalized coordinates.
Since the new Hamiltonian function F’’ is a quadratic form in the adjoint variables or conjugate momenta, the separation of 

variables technique will be applied for solving the Hamilton-Jacobi equation (Lanczos 1970).
Consider the transformation equations:
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where: W = W (a’’, φ, θ’’, C1, C2, E) is the generating function. 
The corresponding Hamilton-Jacobi equation is then given by:

(26)

(27)

(28)

(29)

(30)

(31)

(32)

Following the separation of variables technique (Lanczos 1970), it is assumed that the generating function W is equal to a sum 
of functions, each of which depends on a single old variable, that is:

Therefore, from Eqs. 22-29, it follows that 

A complete solution of these equations is given by:

with 5C 2  
1 + C 2 

2 = 5C 2. We note that W2 is given as indefinite integral, since only its partial derivatives are needed (see 
Eqs. 25-27), as shown in the next paragraphs.

Now, consider the differential equations for the conjugate momenta of the canonical system governed by the new Hamiltonian 
F’’ = E. These equations are:

.

.
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whose solution is very simple:

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

where: αi, i = 1, 2, 3 are arbitrary constants of integration.
Introducing the generating function W, defined by Eqs. 29-32, into the transformation equations, defined by Eqs. 25-27, and 

taking into account the general solution defined by Eqs. 33 for the conjugate momenta, one finds:

From the above equations one finds, after some simplifications, the solution of the canonical system governed by the Hamiltonian 
F’’ for a given set of initial conditions:
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with the auxiliary constants k0, k1 and k2 defined as functions of the initial value of the adjoint variables by:

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

Combining Eqs. 34 and 39, one finds:

This equation can also be used to evaluate the adjoint variable p’’a  along the trajectory, as well as Eq. 45. 
The constants C, C1, C2 and E can also be written as functions of the initial value of the adjoint variables:

In all equations above, the initial conditions are defined by a’’ (0) = a’’ 0, e’’ (0) = sinφ0 and θ’’(0) = θ’’ 0, and τ0 is obtained from 
the Eq. 43, that is, sinφ0 = sink1 sinτ0.
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An alternative expression for variable ψ can be determined from Eqs. 42, 49, 51, 52 and 53, as it follows:

(55)

(56)

(57)

(58)

(59)

(60)

This equation will be useful in the analysis of conjugate point for long duration transfers, discussed later. Note that ψ does not 
depend on k0.

FIRST-ORDER SOLUTION OF THE CANONICAL SYSTEM GOVERNED BY 
HAMILTONIAN FUNCTION H* 

Following the algorithm of Hori method (Hori 1966), the partial derivatives of the generating function S1 with respect to the 
adjoint variables must be determined in order to obtain a first-order solution of the canonical system governed by Hamiltonian 
functionH*. Computing these partial derivatives and applying the initial conditions, one finds:

with a’ , e’ , …, p’θ  previously defined through the Mathieu transformation given by Eqs. 19-21. The eccentric anomaly E’ is 
computed from the well-known Kepler’s equation with the mean anomaly given by:

An approximate expression for the fuel consumption along the extremal trajectory is obtained by simple quadrature of Eq. 9 
and can be put in a compact form as (da Silva Fernandes and das Chagas Carvalho 2008):

with ΔS1 = S1 (M’) – S1 (M’0), with S1 given by Eq. 18. Note that Eq. 60 includes the periodic terms through the generating function S1.

LONG DURATION TRANSFERS 

In what follows is presented a discussion about the existence of conjugate points through the analysis of Jacobi condition, 
and a description of an algorithm for solving the two-point boundary value problem of going form an initial orbit to a final 
orbit for long duration transfers. Such transfers are described by the general solution of the canonical system governed by the 
Hamiltonian F’’
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EXISTENCE OF CONJUGATE POINT

Consider Eqs. 41-44, which defi ne a two-parameter family of extremals in the phase space (a’’, φ’’, θ ’’) 
for a given initial phase 

point (a0 ’’ , φ0, θ0 ’’) corresponding to an initial orbit. By eliminating the auxiliary variables τ and ψ (see Eq. 55), α =a’’/ a0 ’’ and θ’’ 
can be written as explicit functions of φ, that is, α = α(φ, φ0, k0, k1) and θ’’ (φ, φ0, θ0 ’’, k1). Th e conjugate points to the phase point
(a0 ’’ , φ0, θ0 ’’)  are determined through the roots of the equation (Bliss 1946):

(61)

(62)

(63)

Since θ’’ does not depend on k0, ∂θ’’/∂k0 = 0. 
On the other hand, from Eq. 41 and from the remark about Eq. 55, one fi nds:

Th us, the problem of determining the conjugate points reduces to the analysis of the roots of the following equation: 

From Eqs. 43 and 44, it follows that 

Th e partial derivative ∂θ’’ = ∂k1 is then given by

Th e auxiliary variable τ is reintroduced to simplify the expression. 
Th erefore, aft er some simplifi cations, one fi nds that the conjugate points are given by the roots of following equation: 

If a conjugate point τ* exists, or, equivalently, φ* (see Eq. 43 connecting τ and φ), then the extremal does not yield a local 
minimum. Th is is the necessary Jacobi condition in the Calculus of Variations for an extremum (Bliss 1946).

SOLUTION OF THE TWO-POINT BOUNDARY VALUE PROBLEM
In what follows, the solution of the two-point boundary value problem of going from an initial orbit to a fi nal orbit for long 

duration transfers is discussed. 
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To describe this solution, a new consumption variable is introduced (Edelbaum 1965). This new variable is defined by:

(64)

(65)

(66)

(67)

Accordingly, Eqs. 40 and 41 can be put in the form:

where ν0 = √µ/a0 ’’ . These equations are the same ones obtained for transfers between coplanar orbits (da Silva Fernandes and das 
Chagas Carvalho 2008).

By eliminating k0 from the above equations, one finds:

On the other hand, J = Et, thus:

Note that t0 = 0 in equations above. Equation 67 describes the time evolution of the fuel consumption during a long-time 
maneuver.

The solution of the two-point boundary value problem of going from an initial orbit O0: (a0, e0, θ0) to a final orbit 
Of : (af , ef , θf) defined by Eqs. 41-44 involves the determination of the initial value of the adjoint variables p’’ a0, p’’ φ0 

and p’’ θ0, 
or equivalently, the determination of the auxiliary constants k0, k1 and k2. Note that k2 is written in terms of e0, θ’’ 0 and k1 through 
Eqs. 43 and 50. Accordingly, the solution of the two-point boundary value problem reduces to determine the other two constants. 

Note that from the preceding section, Eq. 61, θ’’ only depends on k1. Accordingly, k1 can be determined by solving Eq. 61, 
iteratively by means of Newton-Raphson method, for the given final conditions; that is, for θ’’(tf) = θf. Thus,

with the partial derivative (∂θ’’/ ∂k1)k1 = k1n
 computed from Eq. 62. Note that the Newton-Raphson algorithm fails, if a conjugate 

point exists.
The constant k0 is then determined as follows. Given k1, the auxiliary variable ψf can be calculated from Eq. 55. Solving 

Eq. 41 for k0, one finds:
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where

(68)

(69)

(70)

(71)

(72)

Once the two-point boundary value problem has been solved, the fuel consumption variable J can be calculated from Eq. 67.
The initial value of the adjoint variables p’’ a0, p’’ φ0 

and pθ0 are then obtained as follows. From Eqs. 41 and 64, one finds:

with uf /ν0 given by Eq. 66.
Now, solving Eqs. 48 and 49 for p’’ φ0 

and p’’ θ0, it follows that

The steps of an iterative algorithm for solving the two-point boundary value problem can be described as:
•	 For a given set of initial conditions (a0, e0) and final conditions (af , ef ), compute αf  , φ0 = sin–1 e0 and

 
φf = sin–1 ef .

•	 Guess a starting value for k1.
•	 Compute τ0 and τf from Eq. 43.
•	 Compute θ’’ (tf) 

from Eqs. 44 and 50. 
•	 If θ’’(tf ) 

≠ θ’’f 
, adjust the value of k1 (through Newton-Raphson algorithm) and repeat steps 2 and 3 until |θ’’(tf ) 

– θ’’f, | < δ, 
where δ is a prescribed small quantity.

•	 Compute ψf from Eq. 55.
•	 Compute (uf /ν0) from Eq. 66.
•	 Compute k0 using Eq. 68. 
•	 Compute successively p’’ a0, p’’ φ0 

and p’’ θ0 using the Eqs. 69-71.
The solution of the two-point boundary value problem for long duration transfers is used as starting guess for the solution of 

the complete problem as described later.

TRANSFERS BETWEEN CLOSE ORBITS

For transfers between close non-coplanar coaxial orbits, a simplified and complete first-order solution can be obtained through 
a linearization of the right-hand side of Eqs. 56-58, 59 and 60 about a reference orbit O – with semi-major axis a – and eccentricity 
e –. This simplified solution can be put in the form:

where Δx = [Δα   Δe   Δθ]T denotes the imposed changes on orbital elements (state variables), α = a/a –, pα  = a –pa, p0  denotes the 
3 × 1 vector of initial values of the adjoint variables, and, A is a 3 × 3 symmetric matrix. In this simplified solution, the adjoint 
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variables are constant and the matrix A is given by:

where:

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

E 
– 

is the eccentric anomaly determined from Kepler’s equation with the mean anomaly M 
–

 = M 
–

0 + n –(t – t0) and t0 is the initial 
time. Since the imposed variations on the orbital elements are linear in the adjoint variables, Eq. 72, the solution of the two-point 
boundary value problem is very simple and can be obtained by standard techniques.

For transfers between close orbits, the consumption variable can be written as:

with aαα, aee , and aθθ given by Eqs. 74, 77 and 78, respectively.

SOLUTION OF THE TWO-POINT BOUNDARY VALUE PROBLEM

An iterative algorithm based on the complete first-order analytical solution is briefly described for solving the two-point 
boundary value problem of going from an initial orbit O0:(a0, e0, θ0) to a final orbit Of :(af , ef , θf ) at the prescribed final time tf 

. 
For a given final time, Eqs. 56-58, 59 and 60 can be represented as follows:
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where y1= a, y2= e and y3= θ. Note that pa0, pe0 and pθ0 appear explicitly in the short periodic terms and also implicitly through 
a’ (t), e’ (t), θ’(t)  and E’(t). Thus, functions gi , i = 1, 2, 3, are nonlinear in these variables. 

So, the two-point boundary value problem can be stated as: Find pa0, pe0 and pθ0 such that y1(tf ) = af , y2(tf ) = ef  , y3(tf ) = θf . This 
problem can be solved through a Newton-Raphson algorithm (Stoer and Bulirsch 2002), with the partial derivatives of functions 
gi computed numerically by means of a procedure of centered differences. As previously mentioned, the starting guess for the 
iterative procedure is given by the solution of the two-point boundary value problem concerning transfers with long duration.

RESULTS

Two types of problems are considered: a direct problem, which corresponds to generate extremals trajectories for a 
given set of initial conditions for the state and adjoint variables, and an indirect problem concerning the solution of the 
two-point boundary value problem. In the first problem, a comparison between the complete, nonlinear and linear, first-
order analytical solutions, derived in the preceding sections, and a numerical solution obtained by integrating the canonical 
system of differential equations governed by new Hamiltonian function H*, given by Eqs. 14 and 15, is discussed and the 
accuracy of the analytical approach is established. The second problem involves the comparison of the complete first-order 
analytical solution, including the short periodic terms, and the secular analytical solution (which describes the long duration 
transfers) in solving the two-point boundary value problem of going from an initial orbit O0:(a0, e0, θ0) to a final orbit  
Of:(af , ef , θf ) at the prescribed final time tf. A Runge-Kutta-Fehlberg method of orders 4 and 5, with step-size control, 
relative error tolerance of 10-11, and absolute error tolerance of 10-12, as described in Forsythe et al. (1977), has been used 
in the numerical integrations.

DIRECT PROBLEM
Figures 2-4 show the results for a comparison between three distinct solutions: the complete first-order analytical 

solution, the secular analytical solution, and the numerical solution. Two sets of initial conditions (state and adjoint 
variables) and transfer duration, defined in Table 1, are used in the comparison. Note that a transfer with moderate time 
of flight and a long duration transfer are computed. In Table 2, final values of state variables are shown. In these tables 
and in all figures, the state variables are expressed in canonical units, except the inclination of the orbital plane given 

Figure 2. Comparison between secular, analytical and numerical time evolution of semi-major axis for maneuver 1 with 
tf – t0 = 25.0 and tf – t0 = 500.0.
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Figure 3. Comparison between secular, analytical and numerical time evolution of eccentricity for maneuver 1 with 
tf – t0 = 25.0 and tf – t0 = 500.0.

Figure 4. Comparison between secular, analytical and numerical time evolution of inclination of orbital plane for maneuver 1 
with tf – t0 = 25.0 and tf – t0 = 500.0.
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Table 1. Set of initial conditions and transfer duration.

State and adjoint variables Maneuver 1 Maneuver 2

a0 1.00 1.00
e0 0.10 0.10

I0 (degrees) 10.0 10.0
pa0 4.90002 × 10-5 6.07832 × 10-4

pe0 1.15518 × 10-5 1.92206 × 10-4

pI0 1.28967 × 10-4 3.99208 × 10-4

25 500
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Table 2. Final state variables.

Maneuver
State variables

Analytical theory Numerical solution

Secular solution Complete solution Runge-Kutta-Fehlberg 4-5

tf – t0 25 500 25 500 25 500

1

af 1.00491 1.10294 1.00489 1.10294 1.00489 1.10294
ef 0.10071 0.11348 0.10066 0.11349 0.10066 0.11349

If (degrees) 10.09730 12.05344 10.09684 12.05351 10.09684 12.05351
Jf 2.3338 × 10-7 4.6678 × 10-6 2.3205 × 10-7 4.6678 × 10-6 2.3200 × 10-7 4.6680 × 10-6

2

af 1.06354 5.06122 1.06199 4.91725 1.06199 4.92809
ef 0.11222 0.43929 0.10953 0.41415 0.10952 0.41691

If (degrees) 10.31167 32.02676 10.31524 32.52541 10.31515 32.26476
Jf 2.0662 × 10-5 4.1324 × 10-4 1.9995 × 10-5 4.1229 × 10-4 1.9986 × 10-5 4.1111 × 10-4

Figure 5. Comparison between secular, analytical and numerical time evolution of semi-major axis for maneuver 2 with 
tf – t0 = 25.0 and tf – t0 = 500.0.
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in degrees. It should be noted that similar results can be obtained for maneuver with modification of the ascending 
node, since this maneuver is equivalent to the one with modification of the inclination of the orbital plane, taking into 
account the conditions described earlier (see paragraph after Eqs. 2-7). For simplicity, the results refer to maneuvers 
with modification of the orbital plane.

From the results presented in Figs. 2-4 and 5-7, and in Table 2, note that there exists an excellent agreement between the complete 
analytical solution and the numerical solution. The analytical solution has the same accuracy of the numerical solution for all state 
variables – semi-major axis, eccentricity, inclination of the orbital plane and consumption variable – considering moderate time of 
flight (tf – t0 = 25.0) and large time of flight (tf – t0 = 500.0). On the other hand, by analyzing the time evolution of the semi-major 
axis, eccentricity and inclination of the orbital plane represented in the plots of Figs. 2-4 and 5-7, as given by the 
complete analytical solution, the numerical solution and the secular solution, we can see that the amplitudes of the 
short periodic terms are small, but they can be significant for transfers with short or moderate duration. Note that the 
difference between the numerical solution and the secular solution decrease as the transfer duration increases. The 
good agreement between the numerical solution and the complete analytical solution suggest that the latter can be 
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used in the solution of the two-point boundary value problem of going from an initial orbit to a final orbit, as previously 
described. This last remark is relevant, since the numerical algorithm to compute optimal low-thrust trajectories based 
on the analytical solution requires a simple Newton-Raphson method to solve the two-point boundary value problem, as 
described above.

Figure 6. Comparison between secular, analytical and numerical time evolution of eccentricity for maneuver 2 with 
tf – t0 = 25.0 and tf – t0 = 500.0.

Figure 7. Comparison between secular, analytical and numerical time evolution of inclination of orbital plane for maneuver 2 with 
tf – t0 = 25.0 and tf – t0 = 500.0.
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INDIRECT PROBLEM

In view of the previous results, one sees that the complete analytical first-order solution gives an accurate solution for the extremals 
trajectories concerning the transfers between coaxial non-coplanar orbits. So, in this section a study of some maneuvers is made using 
the analytical solution. The solution of the two-point boundary value problem of going from an initial orbit O0:(a0, e0, θ0) to a final orbit  
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Of :(af , ef , θf ) at the prescribed final time tf is obtained considering the two versions of the analytical solution: the complete 
non-linear solution and the simplified linear solution for transfers between close orbits. This analysis allows us to discuss the 
applicability of the linear solution. Eight different maneuvers are considered, as described in Table 3. The initial orbit O0 is the 
same for all maneuvers and it is defined by the following set of orbital elements: a0 = 1.0 canonical unit, e0 = 1.0 and I0 = 1.0 
degrees. The final value of the consumption variable J is taken as a comparison parameter for five transfer durations. Table 4 
shows the results obtained through the two analytical solutions. JNon-linear is the consumption variable computed by Eq. 60, and 
JLinear is the consumption variable computed by Eq. 80. In both cases, variable J is expressed in canonical units. Figures 8-13 show 

Maneuver tf – t0 JLinear JNon-linear Maneuver tf – t0 JLinear JNon-linear

1

5 1.2257 × 10-04 1.2243 × 10-04

5

5 5.1744 × 10-03 6.0723 × 10-03

10 5.7262 × 10-05 5.7226 × 10-05 10 2.2223 × 10-03 2.1756 × 10-03

15 3.9004 × 10-05 3.9128 × 10-05 15 1.7213 × 10-03 2.0148 × 10-03

20 2.8566 × 10-05 2.8568 × 10-05 20 1.1276 × 10-03 1.2010 × 10-03

25 2.3348 × 10-05 2.3352 × 10-05 25 1.0282 × 10-03 1.1878 × 10-03

2

5 8.4019 × 10-03 8.7410 × 10-03

6

5 5.2947 × 10-03 5.8923 × 10-03

10 3.2064 × 10-03 3.6288 × 10-03 10 2.0128 × 10-03 2.0770 × 10-03

15 2.7985 × 10-03 2.9243 × 10-03 15 1.7472 × 10-03 1.9542 × 10-03

20 1.7661 × 10-03 1.9309 × 10-03 20 1.0867 × 10-03 1.1831 × 10-03

25 1.6413 × 10-03 1.7601 × 10-03 25 1.0112 × 10-03 9.9530 × 10-04

3

5 8.3527 × 10-03 1.0240 × 10-02

7

5 4.8712 × 10-03 5.2944 × 10-03

10 5.3048 × 10-03 4.8075 × 10-03 10 2.1484 × 10-03 2.2786 × 10-03

15 2.7761 × 10-03 3.4134 × 10-03 15 1.6252 × 10-03 1.7622 × 10-03

20 2.4108 × 10-03 2.4108 × 10-03 20 1.1214 × 10-03 1.1969 × 10-03

25 1.6888 × 10-03 2.0480 × 10-03 25 9.6155 × 10-04 9.6277 × 10-04

4

5 4.7730 × 10-04 4.9924 × 10-04

8

5 5.3652 × 10-03 5.8071 × 10-03

10 1.8159 × 10-04 1.8234 × 10-04 10 2.2580 × 10-03 2.4075 × 10-03

15 1.1375 × 10-04 1.1402 × 10-04 15 1.7871 × 10-03 1.9357 × 10-03

20 9.3576 × 10-05 9.3779 × 10-05 20 1.1957 × 10-03 1.2827 × 10-03

25 7.6080 × 10-05 7.6363 × 10-05 25 1.0520 × 10-03 1.0449 × 10-03

Table 3. Set of terminal orbits.

Maneuvers
Terminal orbits

af (canonical units) ef If (degree)

1 1.05 0.105 11

2 1.50 0.45 12

3 2.00 0.25 15

4 1.10 0.15 11

5 1.60 0.25 11

6 1.50 0.30 12

7 1.50 0.20 15

8 1.50 0.25 15

Table 4. Consumption variable.

21/28
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the time evolution of the semi-major axis, the eccentricity, the inclination of the orbital plane and the consumption variable 
for maneuvers 1, 3 and 7. Two transfer durations are considered: tf – t0 = 25.0 and tf – t0 = 250.0 time units. All variables are 
expressed in canonical units, except the inclination of the orbital plane, given in degrees. It should be noted that there exists a 
good agreement between the two analytical solutions, linear and non-linear, for maneuver 1, which corresponds to a transfer 
between close orbits. On the other hand, for maneuver 3, which corresponds to a transfer with moderate amplitude, the results 
given by the linear solution are not good. Similar conclusion applies to maneuver 7, although the behavior for larger duration 
transfer is fair. 

Now, consider the problem of solving the two-point boundary value problem for long-time transfers using the secular solution 
and the complete analytical solution, which includes the short periodic terms. In order to compare these solutions, maneuver 3 
described in Table 3 is considered, with two transfer durations, tf – t0 = 125.0 and 500.0 time units. Table 5 shows the initial value 
of the adjoint variables obtained by using the secular solution and by using the complete solution. Note that there exist small 
differences between these initial values. As previously described, a small adjust of the initial value of the adjoint variables is made 
by a Newton-Raphson algorithm when the short periodic terms are included. Note that this adjust become smaller for a very large 
transfer duration. Moreover, Figs. 14-16 show that the secular solution of the TPBVP does not represent a mean solution of the 
complete solution of the same TPBVP.

Figure 17 represents the optimal trajectory for maneuver 3 with time of flight equal to 125.0 time units. Note that the motion 
of the vehicle resembles a spiral, departing from the initial orbit and arriving at the terminal orbit after twelve revolutions around 
the central body. If the maneuver represents a transfer between two orbits around the Earth with the semi-major axis of the initial 
orbit, a0 = 1.0 distance unit, corresponding to 8000 km, then the maneuver lasts 39.35 hours and the magnitude of the average 
acceleration is equal to 1.59 cm/s2. For such maneuver, the ratio between the average acceleration and the gravity acceleration on 
the ground is approximately 1.6 × 10–3, a typical value for low-thrust propulsion system. Similar conclusions are obtained for the 
other maneuvers discussed in this section.
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Figure 8. Time evolution of state variables for maneuver 1 with  tf – t0 = 25.0.
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Figure 9. Time evolution of state variables for maneuver 1 with tf – t0 = 250.0.

Figure 10. Time evolution of state variables for maneuver 3 with tf – t0 = 25.0.
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Figure 11. Time evolution of state variables for maneuver 3 with tf – t0 = 250.0.

Figure 12. Time evolution of state variables for maneuver 7 with tf – t0 = 25.0.
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Figure 13. Time evolution of state variables for maneuver 7 with  tf – t0 = 250.0.

Table 5. Initial value of the adjoint variables.

Maneuver Secular solution Complete solution

3
T 0ap

0ep
0Ip

0ap
0ep 0Ip

125 0.001203 0.000370 0.000837 0.001215 0.000384 0.000801

500 0.000300 0.000092 0.000209 0.000301 0.000093 0.000207

Figure 14. Secular solution and complete analytical solution of the TPBVP for maneuver 3 for both transfer durations – 
evolution of semi-major axis.
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Figure 17. Optimal trajectory for maneuver 3 with tf - to = 125.0.

Figure 15. Secular solution and complete analytical solution of the TPBVP for maneuver 3 for both transfer durations – 
evolution of eccentricity.

Figure 16. Secular solution and complete analytical solution of the TPBVP for maneuver 3 for both transfer durations – 
evolution of inclination of orbital plane.
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CONCLUSION

An approximated first-order analytical solution for optimal time-fixed low-thrust limited power transfers (no rendezvous) 
between elliptic coaxial non-coplanar orbits in an inverse-square force field is determined through canonical transformation 
theory. The existence of conjugate point for long duration transfers is investigated through Jacobi condition. For transfers between 
close orbits a simplified solution is straightforwardly obtained by linearizing the new Hamiltonian and the generating function 
obtained through Hori method. For the direct problem of generating extremals trajectories, the analytical solution is compared to 
the numerical solution obtained by integrating the canonical system of differential equations describing the extremal trajectories 
for some sets of initial conditions, and the accuracy of the analytical approach is established. For the indirect problem, an iterative 
algorithm based on the first-order analytical solution is described for solving the two-point boundary value problem of going 
from an initial orbit to a final orbit. A comparison between the linearized and nonlinear analytical solutions is made and it has 
been noticed that the linearized solution can provide good results for transfers between close orbits.
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