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ABSTRACT: This paper proposes an active vibration control 
technique, which is based on linear matrix inequalities, that 
is applied to a piezoelectric actuator bonded to a composite 
structure, forming a so-called smart composite structure. 
Serendipity-type finite element, based on first-order shear 
deformation theory with rectangular shape, eight nodes, five 
mechanical degrees of freedom (DOF) per node and eight 
electrical DOF per piezoelectric layer, is established for the 
composite structural model. Additionally, a mixed theory that 
uses a single equivalent layer for the discretization of the 
mechanical displacement field and a layerwise representation 
of the electrical field is adopted. Temperature effects are 
neglected. Simulation results illustrate the effectiveness of 
the proposed vibration control methodology for composite 
structures.

KEYWORDS: Composite materials, PZT actuator, Robust 
control, Linear matrix inequalities.
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INTRODUCTION

The recent years have seen the appearance of innovative 
materials, as the so-called composite materials, particularly 
in aerospace applications. The structures constructed by this 
innovated arrangement are characterized by lightness, high 
mechanical resistance, and the possibility to be optimized for a 
specific working condition. Unlike the regular materials (steel, 
aluminum etc.), the composites are formed by various layers 
with different fiber orientations, which allows to be tailored for 
a particular application (Reddy, 1997). Aircraft, aerospace and 
automotive industries are examples in which the composite 
materials have been increasingly used.

Generally, piezoelectric layers (PZT sensor/actuator patch) 
are incorporated to the composite materials in order to offer 
potential benefits in a wide range of applications, such as 
structural health monitoring, noise suppression, precision 
positioning and active vibration control (Thinh and Ngoc, 
2010). Thus, the set encompassing the composite material, 
piezoelectric layers and monitoring and control systems is 
known as Smart Composite Structure.

Techniques have been developed to represent the dynamic 
behavior of smart composite structures, as the so-called Mixed 
Theory, that uses a single equivalent layer for the discretization of the 
mechanical displacement and a layerwise concept for the electrical 
field (Saravanos et al., 1997). Both mechanical and electrical fields 
are incorporated to the finite element formulation through the 
Hamilton’s variational principle, leading to sets of equations that 
are solved by using appropriated boundary conditions. 

Basically, the mechanical field is represented by applying 
two main theories: First-order Shear Deformation Theory 
(FSDT) and Higher-order Shear Deformation Theory (HSDT). 
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These theories have favorable and unfavorable characteristics, 
especially regarding the accuracy, scope and computational effort 
involved in their implementation (Reddy, 1997; Chee, 2000).

 FSDT takes into account a constant distribution of transverse 
shear strain through the laminate thickness. In accordance with 
real situation, the distribution is parabolic, being necessary to 
introduce a constant correction in FSDT (Reddy, 1997; Cen 
et al., 2002). HSDT is well adapted to represent both thin and 
thick laminated composite plates. Also, it takes into account 
a parabolic distribution of transverse shear strains without 
requiring any correction, such as in the FSDT approach. 
However, HSDT presents an increased analytical framework 
and a higher number of degrees of freedom as compared with 
the FSDT, which represents higher computational cost. Also, 
FSDT generates precise mechanical characteristics, as deflections, 
natural frequencies and buckling loads (Lima et al., 2010).

In the context of countless demands of mechanical systems 
with optimal performance, this work proposes to design an active 
vibration control architecture for a simple smart composite 
structure (clamped-free smart beam). In this study, the mixed 
theory is used to represent the dynamic behavior of the structure. 
The linear quadratic regulator (LQR) approach, solved by linear 
matrix inequalities (LMI), allows for the calculation of the 
feedback controller’s gain. 

LMI is a useful tool for constrained problems in which the 
parameters vary according to a range of values. Once formulated 
in terms of LMI, the problem can be solved efficiently by convex 
optimization algorithms (Boyd et al., 1994). The advantage of 
using LMI for determining the controller gain is the possibility  
of assuming that the parameters of the model involve 
uncertainties. Then, a robust vibration control system can  
be designed. In general, the layer thicknesses, the fiber orientations 
and the elasticity modulus of the composite structure are some 
of the parameter uncertainties to be taken into account.

Additionally, the balanced realization method is used to 
reduce the complexity of the computational model for only 
the most important vibration modes of the structure in order 
to increase the efficiency of the controller. 

COMPOSITE MATERIAL
MECHANICAL DISPLACEMENT FIELD OF THE 
MIXED THEORY

In the Mixed Theory, the mechanical behavior of the structure 
is represented by a first order field (FSDT), expressed as: 

where:
u0, v0 and w0: displacements in the directions x, y and 

z, respectively, addressed to a material point of the mean 
reference plane (x - y); 

Ψx and Ψy: rotations around the x and y axis, respectively, 
of the orthogonal segments to the reference surface. 

The mechanical variables presented in Eq. 1 are described 
by finite elements by using appropriated shape functions 
and nodal variables (mechanical variables). The element 
considered in the formulation is known as serendipity, i.e. 
a plate element with three nodes per edge in a total of eight 
(Reddy, 1997). 

The mechanical displacement field described by FSDT, 
rewritten in local elementary coordinates, is given by:

where:
{U(ξ, η, z, t)} = {u(ξ, η, z, t) v(ξ, η, z, t) w(ξ, η, z, t)}T

[Au(z)]: matrix of the thickness variables z from five 
in-plane functions (u0, v0 and w0, Ψx and Ψy ); 

{ue(t)}: vector that contains all nodal variables; 
[Nu(ξ, η)]: matrix of mechanical shape functions.
The mechanical deformation is presented in terms of 

the shape functions and nodal displacement, as shown  
by Eq. 3.

where: 
[Bu(ξ, η, z)] = [D(z)] [Nu(ξ, η)];
[D(z)] : matrix formed by differential operators appear-

ing in the strain-displacement relations, as detailed in (Chee, 
2000).

LINEAR ELECTRIC POTENTIAL DISTRIBUTED IN 
THE LAYERS

The approximation of the electric potential expressed in terms 
of the Mixed Theory is given by Eq. 4. Note that the coordinate z 
in the thickness direction of the plate is decoupled with respect 
to the reference surface coordinates (x - y).

(1)

(2)

(3)

{U(ξ, η, z, t)} = [Au(z)] [Nu(ξ, η)] {ue(t)}

u(x,y,z,t) = u0(x,y,t) + z Ψx (x,y,t)
v(x,y,z,t) = v0(x,y,t) + z Ψy (x,y,t)
w(x,y,z,t) = w0(x,y,t)

{ε(ξ, η, z, t)} = [Bu(ξ, η, z)] {ue(t)}
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where: 
Lj (z): layerwise function; 
φj(x,y,t): interface functions of the jth composite interface 

constituted by nc layers.
The electric potential described in local coordinates for the 

kth elementary layer of the eth element is expressed in the finite 
element formulation as shown in Eq. 5:

where: 
r: material density; 
[Me]: elementary mass matrix;
[Ke

uu]: elementary matrix of elastic stiffness; 
[Ke

uφ]: stiffness elementary matrices of electromechanical 
coupling; 

[Ke
φφ]: known as dielectric elementary matrix; 

[c], [e] and [χ]: respectively, the elastic stiffness, piezoelectric 
stress and electric permissivity matrices of constant values; 

[Bu]: input matrix; 
Ve : elementary volume; 
J: the Jacobian of the transformation (Reddy, 1997). 
Equation 11 shows the global matrices of the model 

constructed through the standard procedure, in which the 
subscript g indicates global quantities. 

where: 
[Nφ(ξ, η, z)]: matrix of electric shape functions incorporating 

the serendipity shape functions and the Lagrangian interpolating 
functions; 

{φe(t)}: contains the nodal values of electric potential.
Using the definition for the electric field as the negative 

gradient of the electric potential and by taking into account 
Eq. 5, the expansion of the electric field for the k-th layer is 
expressed by:

(4) (10)

(5)

(6)

(11)

(7)

(8)

(9)

φ(ξ, η, z, t)k
e = [Nφ(ξ, η, z)] {φe(t)}

where: 
([Nφ(ξ, η, z)] are the effective electric shape function 

matrix (Chee, 2000);
Bφ: input matrix.

FORMULATION OF THE ELEMENTARY MATRIX
The coupling between the composite structure and 

the piezoelectric element is made through the Hamilton’s 
variational principle, that incorporates all energy contributions 
presented in the structure. According to Chee et al. (2000), 
the coupling elementary matrices are the following: 

{E(ξ, η, z, t)k
e } =    ([Nφ(ξ, η, z)] {φe(t)})

Δ

Δ

where: 
Mg: global matrix elementary;
üg: acceleration vector;
ög: second derivative of

 
ϕg;

ug: displacement vector;
ϕg: vector of electrical potential;
{Fe} and {Qe}: respectively, the generalized force and nodal 

charge (elementary).

BALANCED REALIZATION

Balanced realization consists in describing the model of the 
system in the space state form and combining the controllability 
and observability matrices for each state of the system by 
using the Gramians of controllability and observability of 
the system. The linear transformation that leads the system 
to this representation is called balanced transformation. In 
this method, the reduced model is obtained by neglecting the 
states associated with the small singular values (Assunção and 
Hemerly, 1992; Laub et al., 1987).

A balanced realization is an asymptotically stable minimal 
realization in which the controllability and observability Gramians 
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are equal and diagonal (Conceição et al., 2009). Consider a stable 
linear-time invariant system defined by the state space equations:

where: 
{xr(t)}: reduced state vector; 
ur(t): reduced input vector;
[Ar]: r x r reduced dynamic matrix; 
[Br]: r x m reduced input matrix; 
[Cr]: s x r reduced output matrix.
For the application of balanced realization, the system 

represented by Eqs. 12 and 13 should be transformed into 
the modal domain. For this aim, the canonical state space 
realization was performed so that the dynamic matrix [A] was 
transformed into modal block-diagonal matrix, whose order is 
2 x 2 and each block corresponds to each mode of the system. 

CONTROL APPROACH

Active modal control is used as control strategy for a smart 
composite structure as shown in Fig. 1. In this strategy, δ is the 
displacement, X stands the modal states, FEXC is the external 
forces and u is the control effort.

where: 
x(t): derivative of x(t) with respect to time;
x(t): state vector; 
[A]: n x n dynamic matrix; 
[B]: n x m input matrix; 
[C]: s x n output matrix; 
{u(t)}: input force; 
{y(t)}: output vector; 
n: order of the system; 
m: number of inputs;
s: number of outputs. 
The system is called balanced if the solutions to the following 

Lyapunov equations (Eq. 14 and Eq. 15) are P = Q = diag (σ1, σ2,…, σn):

Figure 1. Active modal control based on modal state 
feedback control (adapted from Koroishi et al., 2014).

.

.

where: 
[P] and [Q]: respectively, the controllability and observability 

Gramians; 
σi (i = 1, 2, ..., n): the singular values of the system  

(σ1 ≥ σ2 ≥ … ≥ σn ≥ 0).
Every σi is associated with a state xi of the balanced 

system. Its value quantifies the contribution that xi makes 
to the input-output behavior of the system. As σ1 ≥ σ2, then 
x1 affects the behavior of the system more than x2, due to 
the fact that the singular values are ranked from the most 
important to the least important one. In the balanced 
realization, the fidelity of the reduced model with respect 
to the full model (A, B, C) depends on the relation σr ≥ σr+1, 
where r is the reduced model order. Thus, the reduced state 
space system is given by:

In the strategy shown in Fig. 1, the smart composite 
structure represented by Eq. 11 was written in the state space 
form as represented by Eqs. 12 and 13 for the simulations.

The advantage of using active modal control is that 
this technique is very effective for flexible structures 
applications, requiring a reduced number of actuators 
and sensors.The states are then used by the controllers to 
determine the control force.

The estimator is responsible for determining the modal 
states required by the controllers. The Kalman estimator 
is able to estimate the states by using noise contaminated 
measurement signals. More details regarding the Kalman 
estimator can be found in the literature (Welch and Bishop, 

{x(t)} = [A]{x(t)} + [B]{u(t)}

{y(t)} = [C]{x(t)}

[A][P] + [P][A]T + [B][B]T = 0

[A]T [Q] + [Q][A] + [C]T [C] = 0

{xr(t)} = [Ar]{xr(t)} + [Br]{ur(t)}

{yr(t)} = [Cr]{xr(t)}

(12)

(13)

(14)

(15)

(16)

(17)

.

Smart composite
structure

Kalman
estimator

Controller

FEXC

L

u

δ

δ

+
–

[Φ]

Φ: transformation matrix.
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1995; Anderson and Moore, 1979; Durbin and Koopman, 
2002). The Kalman estimator is represented by Eq. 18:

[Rlqr]: positive defined hermitian matrix or real symmetric 
that weights the energy cost of each controller (Simões, 2006).

By substituting Eq. 19 into Eq. 20, it is also possible to obtain 
the controller gain [K].

LINEAR MATRIX INEQUALITIES 
LMI is a powerful tool used in many mathematical problems. 

They were first presented by Aleksandr Mikhailovich Lyapunov, 
thus forming the well-known Lyapunov Theory (Boyd et al., 
1994). He demonstrated that the differential equation:

is stable (all trajectories converge to zero), if and only if 
there is a positive-definite matrix Plmi such that:

where: 
[L]: gain matrix. This matrix was determined by using the 

command lqe.m in the software Matlab®;
δ(t): displacement vector;
δ(t): estimated displacement vector.
Figure 1 shows that, in the modal state feedback control, a 

number of controllers are necessary. The method requires the 
modal displacements and modal velocities to determine the control 
effort of the controllers. For this purpose, the Linear Quadratic 
Regulator, solved by LMI, was used to determine the gains of 
the controllers. This method permits to take into account slight 
nonlinearities and uncertainties in the model.

LINEAR QUADRATIC REGULATOR

LQR has a very important role in the design of multivariable 
control of dynamic systems, not only as a powerful control 
technique, but also because it represents the source of many 
recently developed procedures for designing linear MIMO 
systems. Besides providing a methodology to control the 
feedback gain, the linear quadratic regulator ensures good 
stability margins for the closed loop system.

The optimal control, i.e. the linear quadratic regulator in 
the context of the present contribution, is designed, so that the 
minimization of the performance index leads to the optimization 
of pre-defined physical quantities (Ogata, 2003). Considering 
the feedback control given by:

the gain [K] can be determined by the minimization of the 
performance index given by Eq. 20.

where: 
[Qlqr]: positive defined hermitian matrix (positive definite 

or semi-definite) or real symmetric that weights each state;

The inequality given by Eq. 22 is known as the Lyapunov 
inequality.

The advantage of using LMI for determining the controller 
gain is the possibility of assuming that the parameters of the 
model involve uncertainties.

Currently, LMI have been the object of study by many 
researchers around the world, aiming at different applications, 
such as: control of continuous and discrete systems in time 
domain, optimal and robust control (Van Antwerp and Braatz, 
2000; Silva et al., 2004), model reductions (Assunção, 2000), 
control of non-linear systems, theory of robust filters (Palhares, 
1998), besides detection, location and quantification of faults 
(Abdalla et al., 2000; Wang et al., 2007).

LINEAR QUADRATIC REGULATOR USING LINEAR 
MATRIX INEQUALITIES

Several authors have considered applications of LQR; 
however, not so many have discussed the LMI version 
of this controller (Johnson and Erkus, 2002). A version of 
LQR solved by LMI is illustrated in Erkus and Lee (2004). 
The authors of this contribution show that the problem 
LQR-LMI is described by:

{xr(t)} = [Ar[{xr(t)} + [Br]{u(t)} + [L]{δ(t)-δ(t)}.

.

(18)

(19)

(20)

(23)

{u(t)} = -[K]{x(t)}

(21)

(22)[A]T[Plmi] + [Plmi][A] > 0

{x(t)} = [A]{x(t)}

min            tr([Qlqr][Plmi]) + tr([Xlmi]) +

tr([Ylmi]N) }+ tr ([N]TYlmi
T)

X,Plmi, Xlmi
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subjected to:

A piezoelectric ceramic actuator of dimensions 45.9 x 25.5 mm2 
is bonded to the beam’s top surface, 1 mm away from the clamp. 
The composite laminate has a total of 5 layers made of graphite/
epoxy and oriented as: 45°/0°/45°/0°/45°. The layers oriented 
at 0° are parallel to the x axis. The thicknesses of the layers are 
0.2 mm and the thickness of the piezoceramic actuator is 1 mm.

The constants of elastic stiffness of the beam made of 
AS4/3501 carbon/epoxy composite are (given in GPa):  
C11 = 173.6; C22 = C33 = 7.61; C12 = C13 = 2.48; C23 = 2.31;  
C44= 1.38; C55 = C66 = 3.45.  The PZTs are: C11 = C22 = C33 = 102.23; 
C12 = C13 = C23 = 5.035; C44 = C55 = C66 = 2.594.  The PZT patch 
piezoelectric constants are (given in C/m2): e31 = -18.300; 
e32 = e33 = -9.013. The electric permissivities are (given in F/m): 
χ

11
 =  χ22= χ

33
  = 1800ε0 . The mass densities, in kg/m3, are 1,578 

for the composite laminated material and 7,700 for the PZT patch. 
The FE model has been derived by using a 10 x 1 uniform 

mesh. The excitation force (1 N) was applied at point II and 
the time domain structure responses were captured at point I 
(see Fig. 2). The piezoelectric actuator is connected to an active 
control system, and the vibration amplitudes are to be minimized 
over time. To proceed as similar as possible to experimentation 
condition, band-limited white noise is superposed to the 
calculated displacements.

Three cases of active vibration control were analyzed:
aa Comparison between the controllers designed using Eqs. 18 

and 19 and the robust controllers designed using Eqs. 22, 
23 and 24. In this case, there is no uncertainty in the models, 
thus forming the deterministic case.

bb Robustness analyses considering variation in the model 
of smart composite structure so that the uncertainties 
were considered in the dynamical matrix [A] + [ΔA]. 

cc Robustness analyses considering variation in the 
dynamical matrix of Kalman Estimator [Ar] + [ΔAr]. 

The variation applied in case (b) corresponds to 
possible modifications in the structure, and the variation 

where: 
N: noise position vector; 
[Xlmi] and [Ylmi]: LMI solutions; 
tr( ): denotes the matrix trace;
Bw: disturbance matrix.
Equation 23 was adapted from the minimization of the 

performance index given by Eq. 20. Then, the influence of 
noise was incorporated in the process of performance index 
minimization. By solving Eq. 23 with the constraints considered 
in Eq. 24, the controller gain is:

DESIGN OF ROBUST CONTROLLERS USING LMI
The major advantage of LMI design is to enable specifications 

such as stability degree requirements, decay rate, input limitation for 
the actuators and output peak bounder. It is also possible to assume 
that the model’s parameters involve uncertainties (Ogata, 2003). 

The LMI is a very useful tool for problems with constraints 
where the parameters vary according to a range of values. 
The design of robust controllers used in this contribution 
was previously presented by Assunção and Teixeira (2001). A 
system with politopic uncertainties is stable if there is [X] and 
[G] such as the following LMI are feasible:

where: 

Figure 2. Composite cantilever beam with active vibration control.

[A][P] - [B][Ylmi] + [P][A]T - [Ylmi]
T[B]T + [Bw][Bw]T < 0

[G] = [Ylmi] [Plmi]
-1

[Xlmi]
[Ylmi]

T

[Ylmi]
[Plmi]

> 0[Rlqr]
1/2

[Rlqr]
1/2

(24)

(25)

(26)

i = 1, 2, …, m (m is the number of uncertainties);
[X]: LMI solution.
Equation 23 was used for the robust control using LQR, and 

the constraints (Eq. 24) were arranged in the form given by Eq. 26.

NUMERICAL SIMULATIONS

The studied laminated composite beam, illustrated in Fig. 2, 
has 306 mm length (L), 25.5 mm width (b) and 1 mm thickness (h). 

[Ai][X] Bi][G] + [X][Ai]
T - [G]T[Bi]

T < 0
[X] > 0

Controller

L

y
z

hb

F(t)

x

.

.

.
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considered in case (c) corresponds to uncertainties in terms 
of system identification. In both cases, (b) and (c), only non-
parametric uncertainties were considered, and the level of 
these uncertainties was 10% around the nominal value. The 
samples of the uncertainty term Δ are determined by using 
Monte Carlo simulation associated with latin hypercube. The 
number of samples was 100.

For the first two modes, the system was observable and 
controllable. For these two modes, four uncertain modes 
result. Table 1 presents the four uncertain model configura-
tions (matrix Ai). These models were used to determine the 
robust controllers.

Figure 6. Impact response (case b): deterministic value (red 
line) and envelope (blue lines).

Figure 3. Impact response.

Figure 5. Control effort.

Figure 4. Frequency response function.

NUMERICAL RESULTS

Figures 3, 4 and 5 present, respectively, the impact response, 
the frequency response function (FRF), and the control effort 
for case (a).

By analyzing these results, it is possible to observe that 
the system was controlled using the conventional controllers 
and robust controllers. The results were very similar for both 
controllers. The amplitude attenuation is obtained for a time 
smaller than 1 s (see Fig. 5). 

The FRF is presented in Fig. 4. The first two modes were 
attenuated (almost 16.70 dB for the first frequency and 11.65 
dB for the second frequency). Besides, no spillover effects are 
observed for higher modes (see Fig. 10b).

Ai

Mode 1 Mode 2

-10% +10% -10% +10%

1 X -- X --
2 X -- -- X
3 -- X X --
4 -- X -- X

Table 1. Uncertain model (matrix Ai).

Figures 6 to 11 present results for case (b). These results 
are divided in two groups, namely conventional controllers 
(Figs. 6, 7 and 8) and robust controllers (Figs. 9, 10 and 11).

Figure 7. Frequency response function (case b): deterministic 
value (red line) and envelope (blue lines).
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In terms of impact response, Figs. 6 and 9 demonstrate 
that the use of robust controllers results in an envelope slightly 
smaller than the one obtained using conventional controllers. 
The same trend is observed in the control effort presented by 
Figs. 8 and 11. The disadvantage of using robust controllers is 
observed in terms of energy consumption since the control 
effort required when using robust controllers is bigger than 
the one associated with conventional controllers.

In case (b) (which considers uncertainties in the dynamical 
matrix of the smart composite structure), better results in terms 
of vibration attenuation were found (using robust controllers 
when the system presents variation in the model). However, 
these controllers lead to higher energy consumption. 

Figures 12 to 17 present results for case (c), which considers 
uncertainty in the dynamical matrix used by the Kalman estimator. 
These results are divided in two groups: conventional controllers 
(Figs. 12, 13 and 14) and robust controllers (Figs. 15, 16 and 17).

The first aspect to point out in the results obtained for case 
(c) is that they present envelopes smaller than those associated 
with case (b) — when variation is considered in the structure’s 
model, the natural frequency varies according to this variation, 
once the dynamic matrix changes with the value of Δ. The same 

Figure 8. Control effort (case b): deterministic value (red line) 
and envelope (blue lines).

Figure 9. Impact response (case b) - robust control: 
deterministic value (red line) and envelope (blue lines).

Figure 10. Frequency response function (case b) - robust 
control: deterministic value (red line) and envelope (blue lines).

Figure 11. Control effort (case b) - robust control: 
deterministic value (red line) and envelope (blue lines).

Figure 13. Frequency response function (case c): 
deterministic value (red line) and envelope (blue lines).

Figure 12. Impact response (case c): deterministic value 
(red line) and envelope (blue lines).
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Figure 17. Control effort (case c) - robust control: 
deterministic value (red line) and envelope (blue lines).

Figure 20. Difference between maximum and minimum voltage.

Figure 16. Frequency response function (case c) - robust 
control: deterministic value (red line) and envelope (blue lines).

Figure 19. Difference between maximum and minimum FRF.

Figure 15. Impact response (case c) - robust control: 
deterministic value (red line) and envelope (blue lines).

Figure 18. Difference between maximum and minimum 
displacement.

trends are not observable in case (c), because, in this case, the 
variation is applied in the dynamic matrix of the estimator.

Based on the influence of the variation applied in the dynamic 
matrix of the estimator, it is possible to observe better results in 
terms of vibration attenuation when using robust controllers. 
Figure 15 shows that the use of robust controllers lead to a 
better controlled response as compared with the determinist 
response. However, the energy consumption increases in the 
first oscillations that result from the impact response (please 
compare Fig. 17 with Fig. 14). 

A comparison between the results obtained for cases (b) 
and (c) was performed. This comparison was based on the 

difference between the maximum and the minimum value of 
each envelope. Figures 18, 19 and 20 present, respectively, the 
interval of the controlled response, FRF, and control effort.

Figure 14. Control effort (case c): deterministic value (red line) 
and envelope (blue lines).
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CONCLUSIONS

The present contribution was dedicated to the design of 
robust controllers using LQR solved by LMI. The motivation 
for this research effort is that LMI approach represents a 
powerful mathematical tool that exhibits relevant characteristics 
which facilitate the resolution of control problems involving 
uncertainties. This configuration corresponds to real world 
applications, particularly in the case of aerospace structure design.

For illustration purposes, the present study aimed at 
applying the LMI technique to beams made of composite 
material. A model reduction method associated with the 
balanced realization technique was performed.

The results have revealed that the number of considered 
modes (two) was sufficient to achieve satisfactory control. It 
should be emphasized the importance of balanced realization 
on this stage, since this technique ranks the modes in order of 
relevance, regarding the dynamic behavior of the system. This 
means that the considered modes are the most important to 
the system response. 

Also, with respect to the modes, the robust controller technique 
was effective on the first two modes and no spillover effects 
were observed in the higher modes. The results demonstrated 

the effectiveness of the methodology proposed, based on the 
comparison of the controlled and uncontrolled system responses. 
The presented results demonstrate the great potential of the 
proposed methodology (using LMI), since it led to very similar 
results as compared with those obtained via LQR solved by classical 
Ricatti equations. These trends were clearly observed in case (a).

Cases (b) and (c), which consider variation in the 
dynamic matrix of the smart composite structure and Kalman 
estimator, respectively, demonstrated better results in terms 
of vibration attenuation using robust controllers (when 
the system presents variation in the model). However, the 
robust controllers require bigger energy consumption than 
the conventional ones.
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