Evaluation of Unmanned Aerial Vehicles Cooperative Combat Effectiveness Based on Conditional Entropy Combination Weight Method

Lifan Sun, Jiashun Chang, Jinjin Zhang, Zhumu Fu, Jie Zou

Abstract


For evaluating the cooperative combat effectiveness of unmanned aerial vehicles (UAVs), traditional entropy methods have an undue weight coefficient of the index due to its high degree of dispersion, and the interrelationship between the indices are not considered. To deal with this problem, this paper proposes a conditional entropy combination weighting method for evaluating the cooperative combat effectiveness of UAVs. Firstly, with the aim of establishing the UAV cooperative combat index system, the modified Delphi method has been combined with analytic hierarchy process (AHP) and interval estimation. This method has been used for estimating the degree of contribution of each index and to remove the indices that have a low contribution. Secondly, the principle of conditional entropy has been introduced for modifying the entropy method with the consideration of the interrelation between the indices. Finally, the modified entropy and AHP have been combined to assign the final weight in the UAV cooperative combat system. Testing results demonstrate that the index system established by this method is more comprehensive and reasonable as compared to that established by the traditional Delphi method. Compared with the single weighted method, this method is more suitable for the evaluation system of UAVs cooperative combat effectiveness.

Keywords


Cooperative Combat Capability; Interval Estimation; Analytic Hierarchy Process

Full Text:

PDF

Refbacks

  • There are currently no refbacks.
';



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.