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ABSTRACT: In this paper it was sought to enhance the 
potential damage detection, location and quantification of 
the Discrete and Continuous Wavelet Transforms in thin 
damaged laminated composite plates by a signal derived from 
vibration modes. To evaluate the ability of both transforms 
in the damage prognostic it was also proposed the use of 
Damage Indexes. The matrix damage level occurs during the 
impulsive load application over the analyzed structures. The 
finite element used was a Serendipity-type with rectangular 
shape, 8 nodes and 5 mechanical degrees-of-freedom per 
node, which was formulated by First-order Shear Deformation 
Theory on MATLAB (MathWorks®). The dynamic equation of 
motion including internal damage was solved by the Newmark 
implicit integration method. The results have demonstrated 
that mother wavelets, whether discrete or continuous, applied 
in dynamic signal processing, can detect a small damage 
magnitude in the matrix level. Moreover, the proposed 
Damage Indexes can quantify the damage magnitude as well 
as determine the most appropriate vibration mode and scalar 
parameter of the Continuous Wavelet Transform for damage 
detention.

KEYWORDS: Discrete Wavelet Transform, Continuous 
Wavelet Transform, Laminates, Matrix damage, Damage 
Indexes, Finite Element Method.
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InTRODuCTIOn

The analysis of the component materials within a structure 
during its life cycle is known as Structural Health Monitoring 
(SHM). The main SHM goal is to detect and describe possible 
changes in the structural system under normal operational 
conditions and using non-destructive methods to provide 
a better level of safety to the users and to avoid possible 
catastrophic failures. Within the category of SHM methods 
(natural frequencies, electro mechanic impedance, acoustic 
emission, Lamb waves, among others) the Wavelet Transform 
(WT) is applied due to its efficiency at identifying insignificant 
singularities of signs and waves. According to Stark (2005), WT 
studies have first initiated during the middle 1980s, when signs 
originated from seismic activities and earthquakes have brought 
the necessity of studying such waves using a more precise 
method than the one developed by the Fourier Transform. Two 
different WT approaches, the Continuous Wavelet Transform 
(CWT) and the Discrete Wavelet Transform (DWT), are the 
most widespread methods in the scientific literature when 
detecting damage in general structures. The DWT demands 
less computational time consumption compared to the CWT 
when it comes to signal processing and is then preferable for 
online damage monitoring on structures. Furthermore, the 
CWT requires a scale-parameter (a) definition for the correct 
damage location.

doi: 10.5028/jatm.v9i4.804

1.Universidade Federal do Triângulo Mineiro – Instituto de Tecnologia e Ciências Exatas – Departamento de Engenharia Civil – Uberaba/MG – Brazil. 2.Departamento 
de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de Aeronáutica – Divisão de Engenharia Civil – São José dos Campos/SP – Brazil. 3.Universidade Tecnológica 
Federal do Paraná – Departamento de Engenharia Mecânica – Programa de Pós-Graduação em Engenharia Mecânica – Cornélio Procópio/PR – Brazil.

Author for correspondence: Albert Willian Faria | Universidade Federal do Triângulo Mineiro – Instituto de Tecnologia e Ciências Exatas – Departamento de 
Engenharia Civil | Avenida Dr. Randolfo Borges Junior, 1.250 – Unidade I | CEP: 38.064-200 – Uberaba/MG – Brazil | Email: albert.faria@uftm.edu.br

Received: Sept 24, 2016 | Accepted: Mar 23, 2017



J. Aerosp. Technol. Manag., São José dos Campos, Vol.9, No 4, pp.431-441, Oct.-Dec., 2017

432
Faria AW, Silva RA, Koroishi EH

The study carried out by Wang and Deng (1999) is considered 
the pioneer of damage diagnosis in 2-D isotropic structures 
using CWT. Other studies suggest using DWT (2-D) for 
damage detection in 2-D structures, such as the one developed 
by Loutridis et al. (2005), who has used it in the decomposition 
of metallic plates vibration modes to determine the damage 
depth, location and length, inserted as a crack on the structure. 
Following a similar analysis, there are the academic papers of 
Chang and Chen (2004) as well as Rucka and Wilde (2006), 
making use of CWT, besides Katunin (2011) regarding DWT 
applied for isotropic structures.

Only a few studies implementing WT are observed in 
laminated composite structures. Within the composite materials 
field of study, in the paper of Katunin (2011) it was specifically 
adopted a B-spline DWT in 1 and 2 dimensions. The numerical 
results were compared to the ones experimentally obtained. Yan 
and Yam (2002) achieved solid results for damage detections 
in composite plates with piezoelectric materials. The acquired 
voltage in the piezoelectric sensors are processed by the WT to 
detect the damage once determined in the composite matrix. 

The appearance of micro-cracks over the laminate matrix is 
considered the first damage mechanism to induce variations on 
the mechanical properties of laminated composite structures, 
consequently affecting their dynamic properties (natural 
frequencies, modal damping, shape modal, among others). 
Problems involving mechanical stiffness and strength droppings 
on composite structures in the presence of damage mechanisms 
and different numerical approximations (Shear Lag Model, 
Vibration Model, Elasticity Model, Self-Consistent Model and 
Continuum Damage Model — CDM) are provided for modeling 
damaged laminated composite structures. This study aimed at 
modeling the CDM numerical formulation, utilizing continuum 
mechanics combined with the Thermodynamics of Irreversible 
Processes (TIP). The association between the aforementioned 
methodology and the Finite Element Method (FEM) provides 
the development and use of a model accurately close to the 
real mechanical behavior of damaged composite materials, in 
a more efficient manner than the majority of the models once 
used in Structural Health Monitoring using Wavelet Transform 
(SHM-WT) researches. 

One of the goals of the present research is to achieve the 
numerical implementation of a FEM formulation, considering 
a time and scalar variable D for modeling damaged laminated 
composite structures (matrix damage) and also to evaluate a 
reliable methodology for detecting, locating and quantifying the 

degree of damage severity in laminated composite plates. The 
foregoing methodology is based on applied wavelets coefficients 
(via DWT and CWT) in dynamic signals (vibration modes) 
of damaged laminated composite structures. In addition, it is 
also presented the combined use of Damage Indexes (DI) for 
quantifying the detected damage via wavelet coefficients (WC). 
Especial attention is given to the temporal damage mechanism 
herein implemented.

The matrix damage is the mechanism implemented in this 
study and it is formulated using the TIP. The damage on the 
laminated composite matrix results from the application of an 
impulsive load in the laminated composite plate. The proposed 
damage detection and location are achieved by Daubechies 
family wavelets (Stark 2005), which are implemented to high- 
and low-frequency vibration modes.

METhODOlOgY

This study makes use of DWT and CWT directly applied in 
high- and low-frequency vibration modes of a given damaged 
laminated composite structure for the spatial obtainment of the 
WC, consecutively adopted for damage detection and location 
through their singularity peaks. The eigenvectors, represented 
by the structure vibration modes, are straightly decomposed by 
the considered WT and are then applied on those coefficients 
of spatial depiction.

Apart from the mentioned papers, hardly any study gives a 
thorough attention to the time damage mechanism proposed 
here. In addition, only a small number adopts an association 
between DI and WT in identifying low- or high-frequency modes, 
which are more appropriate for damage detection in laminated 
composite structures.

Concerning the adopted FEM formulation of composite 
laminated structures, it can be observed from the literature a 
wide variety of theories — First-order Shear Deformation Theory 
(FSDT), Higher-order Shear Deformation Theory (HSDT), 
Layerwise Theory, among others —, individually presenting 
favorable and unfavorable characteristics, especially about accuracy, 
implementation knowledge and computational efforts with respect 
to its numerical application (Reddy 1997). The FSDT approximates 
the mechanical variables using a linear polynomial function and 
is used due to its computational cost and realiable numerical 
approximation (in terms of displacement, natural frequencies and 
modal shapes) for thin laminated composite structures. 
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The FSDT incorporating the matrix damage mechanism 
in the composite laminated structures presented in this paper 
is summarized in the following sections (and implemented on 
MATLAB, MathWorks®). The aforementioned formulation 
may also be reviewed in Faria (2010).

DAmAge FoRmulAtion 
The mechanical behavior of a composite structure is 

mathematically approximated using FSDT theory by a first-order 
field displacement, expressed as follows:

where: Me is the elementary mass matrix; Ke is the elementary 
stiffness matrix dependent on the scalar damage variable 
(D); nk is the total number of layers k along the laminate 
thickness; ρk the density of a material from a particular layer 
k; C is the matrix of constants of elasticity dependent on 
D; N is the shape function matrix formed by the standard 
serendipity 8-node shape interpolation functions; A is 
the matrix defined in Eq. 1; B is the displacement differentiation 
matrix obtained by differentiation of displacements expressed 
through shape functions and nodal displacements.

The changing process of the local coordinate system 
(ξ, η) to the elementary (or physical) one is accomplished 
by using the Jacobian of the transformation, expressed as 
J = дx,ξ дy,η – дx,η дy,ξ (Reddy 1997).

As will be presented in Eq. 9, the stiffness matrix may be 
subdivided into 2 distinct matrices, one in a non-damaged 
initial state Knd and another in a damaged initial state Kd. 

In the case of an orthotropic material, which presents 
9 independent coefficients of elasticity (Reddy 1997), the 
matrix of constants of elasticity C(D) in a damaged state and 
developed in the material reference system (1, 2, 3) can be 
expressed as (Boubakar et al. 2002):

where: u –  is the general displacement function at an arbitrary point 
of the element; u, v and w denote the displacement in directions 
x, y and z, respectively;  uo, vo and wo are the displacements 
along the coordinate directions (x, y, z) of a material point in the 
reference plane (x, y, 0) from the laminated composite structure; 
θx and θy are respectively rotations in relation to the elementary 
axes x and y; u(x,y,t) is the vector of nodal displacements 
(uo, θx, vo, θy, wo); A(z) is the matrix that relates the vector u –   
with the vector u.  

From Eq. 1, it can be seen that the displacement approximation 
in the thickness direction z is made separately from the 2 other 
directions, in a procedure which is similar to the traditional 
separation of variables.

The present paper implements a finite element known 
as “Serendipity” (Bathe 1996) on MATLAB. It is a finite 
element plate on which every edge presents 3 nodes, totaling 
8 nodes and 40 degrees of freedom. The 8 shape functions 
of the Serendipity finite element are provided by Reddy 
(1997).

The formulation of elementary matrices (mass and stiffness) 
is possible by using Hamilton’s Vibrational Principle (Bathe 
1996), which incorporates the total energetic contributions 
presented on a given structure. The elementary matrices written 
in the local coordinate system (ξ, η) can be expressed in the 
following form: 
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where: Cl is the matrix of elastic constants in a damaged 
state; S is the flexibility matrix; H(D)is the damage matrix 
containing the density functions of microcracks expressed in 
terms of D. 

The coefficients from the flexibility matrix S are notified by 
Reddy (1997). In a non-damaged state, D is equal to 0, while, 
in a damaged state, 0 < D < 1; for an absolute failure condition 
on a given composite structure, D is equal to 1. The damage 
development law is expressed in terms of TIP to obtain the 
matrix H(D), demonstrated in the next section.

In order to transform the constants of elasticity from 
the material reference system (1, 2, 3), delineated by l, into 
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the elementary reference system (x, y, z), it is adopted a 
transformation matrix T(q) (Reddy 1997).

Rah (2007) depicts the most frequent damage mechanisms 
in laminated composites, among which, micro-cracks randomly 
dispersed through the matrix, fiber detachments and ruptures, 
fiber-matrix slides and detachments of adjacent layers from 
the laminate. According to Reddy and Miravete (1995), the 
micro-cracking damage mechanism on the laminate matrix is 
considered the very first to be noticed on a composite material 
when it is subjected to severe loads. 

The interest in this paper is the study of the damage D on 
the matrix of laminated composite structures. That type of 
damage stimulates a loss of mechanical stiffness, mathematically 
represented by the modification on the matrix of elasticity 
constants of the composite material Cl(D), as indicated in 
Eq. 4, where the damage matrix H(D) is dependent upon the 
scalar variable D, which is in turn associated to each micro-crack 
opening mode. The damage matrix H(D) presents the following 
non-zero elements: H22 = S22D/(1− D), H44 = (S11S22)

1/2D/(1 − D)1/2 

and H66 = S22D/(1 − D)1/2, obtained from TPI (Boubakar et al. 
2002). 

The damage law provided by TPI is further associated to 
the calculation of 1 sole internal damage scalar variable (D), 
valid for materials with an expressed transversal isotropy, also 
known as load function. It is expressed as (Boubakar et al. 2002):

solving Eq. 5, known as predictor-checker scheme, is presented 
in Faria (2010) and Mahmoudi et al. (2015).

Considering the connectedness between the nodes and 
implementing the standard procedure for assembling the 
global matrices (Bathe 1996), the mathematical model of 
the global equation for displacements of a damaged system can be 
expressed as follows, excluding the laminate inherited damping:

where: matrix H · contains the derivatives of D, associated 
to each individual effective stress from the composite material; 
the material constants yc, q and p are experimentally obtained; 
Y is the associated thermodynamic force related to the proposed 
damage mechanism herein; σT is the transpose of the stress 
tensor σ.

Equation 5 represents the physical border between 2 
domains of the composite material: elastic and non-elastic. If 
fd < 0, the thermodynamic force Y is less significant than the 
damaged domain Y 

–
, in other words, the damage is still not existent 

on the laminate matrix (Mahmoudi et al. 2015). However, if 
the function fd tends to a positive value, it leads not only to a 
damage increase, but also to an increase in the thermodynamic 
force Y, changing fd and its derivative 

– 
fd to 0 (Boubakar et al. 

2002; Mahmoudi et al. 2015). The resolution of the non-linear 
Eq. 5 directly provides the damage increment DD on the current 
stress stage (i + 1). The implemented algorithm flowchart for 
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where: M is an Nn × n global mass matrix (Nn is the total number 
of nodes from the structure); K(D) is the global stiffness damage 
matrix; f(t) is an Nn × 1 vector of external loads. 

In the dynamic analysis under free vibrations modes, Eq. 6 
is manipulated assuming the global vector of external loads 
f(t) as being 0 and adopting a periodic solution expressed in 
the form of u(t) =  u ~eiωt, where ω is the natural frequency and 
t is the time variable. Thus Eq. 6 can now be changed to the 
following expression:

For a non-trivial solution of u ~, according to Chang and 
Chen (2004), the determinant of their coefficients must be 0, 
that is, |K(D) – ω2M| = 0. Expanding the determinant gives 
the frequency equation. The roots of this equation give the 
natural frequencies of vibration and, substituting into Eq. 7, 
the nth mode shape Wn is obtained. 

Since the global stiffness matrix K(D) is dependent upon 
D, which is in turn dependent on t, the natural frequencies and 
the vibration modes in the performed experiments are collected 
at an ending excitement time tf of composite structures. The 
Implicit Newmark’s Method (thoroughly detailed in Bathe 
(1996) is appropriate for non-linear solutions in the time domain 
of Eq. 6. It allows the calculation of the global displacements 
vector u (either velocity or acceleration), according to the global 
excitement force f(t) that is applied on the analyzed structures 
and is constantly updated over time, which generates the time-
domain response.

DiscRete AnD continuous WAvelet 
tRAnsFoRms AnD DAmAge inDexes 
FoRmulAtions 

According to Stark (2005), a CWT is described as the 
sum of times along the sign, multiplied by a staggered and 
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translated mother wavelet; it may be mathematically expressed 
as the internal multiplication between f(t) and ψa,b(t), following 
the expression:

damage severity (damage quantification) is provided in this 
paper through DI, which are based on intensity, frequency, or 
energy of signals along the time domain. Usually, it is adopted a 
reference signal (baseline) from the undamaged structure and, 
with the structure signal that has an unknown integrity stage, 
it is possible to identify eventual changes in the mechanical 
properties of the structure and the presence of damage. The DI 
performance depends on the nature of the damage, in other 
words, on how the signal is affected. 

In this paper, the laminated composite structures are eva- 
luated through the following DI: Signal Amplitude Hilbert 
Transform Maximum (SAHTM), Signal Amplitude Peak Squared 
Percentage Differences (SAPS) and Discrete Wavelet Transform 
Approximation Coefficients (DWTAC), which are associated 
to expressions presented and discussed by Loendersloot and 
Moix-Bonet (2015). Traditionally, only the DWTAC index 
deals with the WT signal, while others adopt untransformed 
signals derived from vibration modes of the regarded damaged 
structure. In this paper, the SAHTM and SAPS damage indexes 
were also implemented, considering the original DWT signal.

(8)

where: Ca,b are the WC from the mother wavelet and represent 
the similarity between f(t) and its daughter wavelets; f(t) is the 
target signal to be transformed over the time or spatial domain; 
a is the scale parameter, which may be related to expansion 
(a > 1) or compression (a < 1), and it allows the function ψ(t) to 
increase or decrease its width; b is the displacement parameter, 
representing the distance with which ψ(t) was translated over 
the t axis, aiming to cover up every f(t) sign; |a|–1/2 is the 
normalization factor. 

In Eq. 8, the function ψ – is the mother wavelet, while the 
resulting functions ψa,b(t) are the daughter wavelets. There are 
several types of mother wavelets, among which (Hernández and 
Weiss 1996; Stark 2005): Morlet, Haar, Daubechies, Symlets, 
Coiflets, BiorSplines and ReverseBior; all of them have already 
been implemented on the software MATLAB®.

The scalar parameter a may be turned into a discrete 
exponential form, while the translation parameter b, into 
a discrete proportional form. In other words, a = am 

o and  
b = nbo a

m 
o, where ao and bo are the length of discrete scaling 

and displacement paces, respectively; m and n are integer 
numbers, correspondingly related to the scale and translation, 
which generate a new bi-dimensional array m × n. The parameters 
discretization is the process that originates the DWT, although the 
independent variable — time (or space) — remains continuous. 
According to literature data (Hernández and Weiss 1996), and 
by substituting the parameters a and b from Eq. 8, subjected to 
discretization, the DWT assumes the following form:

(9)

(10)

(11)

(12)

where: m and n are integer values; ao 
–m/2

  is a constant norma- 
lization factor. In order to achieve a satisfactory computational 
efficiency, ao = 2 and bo = 1 are commonly adopted (Oppenheim 
and Schafer 1975).

In the present paper, the DWT is employed in the signal 
processing originally from vibration modes of damaged composite 
structures, subjected to a variable load over time. Since WT 
provides information regarding particularly the structural integrity, 
that is to say, regarding the damage detection and location, the 

where: H and D are respectively the structure responses (from 
the WC of the vibration modes), which have been measured 
at the initial (not considering failures) and damaged stages. 

One of the main objectives here is to specifically analyze 3 
damage indexes and point out the most appropriate ones for 
quantifying the damage severity over the laminate matrix. That 
is particularly one important innovative aspect, since there is 
no study dealing with the association between DI and WT for 
the SHM of structures. 

In the next section, some of the numerical applications 
that validate the proposed methodology for damage detection, 
location and quantification in composite laminated materials 
using the association between DWT (Eq. 9), CWT (Eq. 8) and 
DI (Eqs. 10, 11 and 12) are presented.
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RESulTS AnD DISCuSSIOn

A given laminated composite plate (Fig. 1) is analyzed 
under both non-damaged and damaged conditions; in the 
later, an impulsive load F(t) is applied, according to Eq. 13, 
over the laminated plate surface x-y. We have considered the 
same laminated composite plate for every numerical application 
and a fixed end along its 4 edges. The inherent damping in the 
laminated composite is disregarded, because a more realistic 
damping model for those materials would be based, for instance, 
on the Complex Module, which has a numerical implementation 
dependent on specific experimental data of the composite 
material herein implemented that is currently unreachable in 
the open scientific literature. Moreover, the evaluation of such 
data is not among the research subjects of this paper, since in the 
Complex Module the laminate mechanical properties depend 
upon the operating temperature and the excitation frequency.

non-zero variable D. At the end of the load application time 
t, the damaged laminated composite structure, with D ≠ 0, 
originates another plate model under a damaged condition 
(PI) that will be directly applied to calculate the natural 
frequencies of the laminated structure as well as to locate the 
damage via DWT and CWT. 

Figure 1. Geometry of the considered laminated composite plate.

F(t)
yz

L

W

H

x

The plate is considered thin with the respective dimensions 
(L × W × H): 0.400 m × 0.300 m × 0.001 m and is composed by 
3 equally thick layers, oriented with (90°/0°/90°); its mechanical 
properties are provided in Table 1. The laminated composite 
structure is then discretized into 12 × 16 finite elements via 
FSDT-FEM, totaling 2,605 degrees of freedom.

The first simulation is performed aiming to obtain a reference 
model (Ref) under a non-damaged condition and considering 
t = 0, that is to say, before applying the impulsive load over 
the laminated composite plate. Therefore, for t = 0, the plate 
demonstrates no damage, i.e. D = 0.

The damage is generated on the reference composite plate 
(Ref) by the application of an impulsive load (Eq. 13). For each 
time increment the damage variable (D) is calculated using 
Eq. 5, which modifies the matrix of elasticity constants C(D) (Eq. 4) 
in conjunction with the stiffness matrix (Eq. 3) considering a 

constants of the 
laminated material

unit magnitude

Density: ρ kg/m3 2,279.9

Longitudinal modulus of elasticity: E1 MPa 45,680

Transversal modulus of elasticity: E2 MPa 16,470

Shear modulus of elasticity: G12 MPa 6,760

Poisson’s ratio: v
12

- 0.34

Poisson’s ratio: v
23

- 0.34
constants associated to the 

damage mechanism
unit magnitude

Yc MPa 0.0027

q MPa 1.246

p - 0.816

Table 1. Mechanical properties of the laminated material, 
glass-epoxy.

mode
Ref (Hz) 

i
Pi (Hz) 

ii
εi (%)  

100(i – ii)/i

1 61.2936 61.2519 0.0681

2 87.0429 86.8795 0.1877

3 134.1827 133.9524 0.1717

4 155.6802 155.5755 0.0672

5 177.6409 177.4334 0.1168

6 201.5857 200.9708 0.3050

7 218.7644 218.4997 0.1210

8 281.2530 280.5812 0.2389

9 288.2813 287.5021 0.2703

10 299.0921 299.0590 0.0111

Table 2. Natural frequencies of the composite laminated 
plate under non-damaged and damaged conditions.

Table 2 summarizes the values from the first ten natural 
vibration frequencies of the composite structures, analyzed 
under a non-damaged stage (Ref) and under a damaged stage 
(PI simulation).

For the numerical application, known as PI simulation, 
an impulsive load F(t) is applied to the direction z on the 
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non-centered position P(C/1.6, L/1.5), according to the equation: layer, and this is explained by the layer orientations. The fibers 
orientation of the 2 external layers is likely to induce micro-
crack openings, as it can be inferred from the scalar damage 
values on external layers compared to the ones collected from 
the central layer and from Figs. 3a and 3b. 
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 where: fo is the applied excitement force amplitude; δ is the 
application period of F(x, y, t); tf is the ending time of the force 
application. For simulation PI, δ = 100 ms and tf = 250 ms, 
totaling 250 subdivided increments; fo = −116 N. 

Figure 2 illustrates the development of D combined with the 
time deflection (displacement) from the closest Gauss point in 
relation to the plate’s first excitation point, from top to bottom 
(x = 0.25 m, y = 0.20 m). It is also presented that the value of 
the scalar damage variable rapidly increases until it reaches 
t = 59 ms and then remains constant until t = 177 ms, fluctuating 
again before going up to its maximum value (Dmax = 0.1718, 
illustrated by the dashed curve). It can be noticed from 
Figs. 2 and 3 that the matrix damage appears approximately 
where the impulsive load was applied (a non-centered position), 
i.e., in the position P(C/1.6, L/1.5), as previously expected.  

Figure 2. Development of D over time combined with the 
deflection.
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It is possible to note from Table 2 that the natural frequency 
values decrease as D values increase, which in turn indicates 
stiffness degradation in the composite structure after the 
impulsive load application.

Figure 3a illustrates the damage scalar variable distribution 
along the plate’s external layer surface (Fig. 3b), for both external 
and internal layers of the laminated composite.

The difference between damages obtained on distinct layers 
can be clarified through the linear stress variation along the 
laminate thickness. Figure 3 illustrates that the maximum D 
value, in both external layers, is higher than it is in the central 

Figure 3. Flat distribution of the variable D for both external 
(a) and internal (b) layers of the laminate.

Through WT (DWT and CWT) and the DI (SAHTM, SAPS 
and DWTAC), the signal originated from the 10 first vibration 
modes of the non-damaged laminated composite structure 
is analyzed. Regularization and interpolation techniques are 
implemented to signals derived from the plate vibration modes 
for PI simulation. The signal interpolation is undertaken using 
cubic splines to increase the numerical data, and the Tikhonov 
regularization is then implemented to increase the perturbation 
generated by damage presences in CW graphs. Those foregoing 
techniques can be found in the study of Perreux et al. (1992). 
After being altered, the signal is then processed using the mother 
wavelets Daubechies (dbN), where N notifies the type of mother 
wavelet. The signal originated from the vibration mode is directly 
decomposed through WT, on the other hand, the DI require 
information from the non-damaged and damaged condition.

In order to emphasize the influence that choosing the most 
appropriate vibration mode may have on the damage location, 
Table 3 shows the DI values and the damage location through 

(a)

(b)
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the discrete mother wavelet db8 signal (DWT-db8), derived 
from the first 10 vibration modes and adopting the damaged 
plate. From this table, it can be concluded that all DI reach their 
maximum values in the fourth vibration mode, the one capable 
of detecting the damage location, which was in turn verified from 
the minimum percent error value in directions x and y of the 
plate (εx = 0.68%, εy = 4.50%), obtained between the point where 
the damage has been manifested (position of load application, 
x = 0.25 m and y = 0.20 m) and the one from the mother 
wavelet db8 (xmax = 0.2517 m, ymax = 0.2090 m); xmax and ymax 
are the points where the WC reach their maximum values over 
the surface of the analyzed plate. It can also be noted that the 
higher the DI values, the least the percent error (εx, εy). 

The deriving vibration mode signal of the structure under 
a damaged condition has also been processed by CWT after 
normalization and interpolation techniques had been applied 
using the mother wavelet Daubechies 8 (CWT-db8), as in the 
case of the previous simulation. 

Figure 5 depicts the flat (Fig. 5a) and spatial (Fig. 5b) 
distribution of the WC via CWT-db8, which have been 

modes
Damage indexes

Peak 
coordinates (m)

DWtAc sAPs sAHtm xmax  ymax

1 0.0182 7.8565e-4 0.0280 0.2262 0.1478

2 7.8565e-4 2.6202e-4 0.0162 0.2772 0.1507

3 2.8378e-4 2.5226e-4 0.0159 0.0030 0.1507

4 0.2556 0.7943 0.8912 0.2517 0.2090

5 0.0074 4.9348e-4 0.0222 0.1019 0.0866

6 3.9626e-4 2.9773e-4 0.0173 0.0030 0.1507

7 0.0014 1.7812e-5 0.0042 0.0030 0.2134

8 0.0339 0.0297 0.1723 0.0030 0.0881

9 0.0080 3.2681e-6 0.0018 0.0030 0.1567

10 0.0093 0.0198 0.1407 0.2517 0.1522

Table 3. DI values using the discrete mother wavelet db8 
and as a function of its first 10 vibration modes.

Figure 4 illustrates the DWT flat distribution along the plate 
surface (Fig. 4a) and space (Fig. 4b), obtained from the db8. 
The dynamic signals are gathered and processed via DWT-db8 
considering only a damaged stage. It can be noticed from all 
figures that the area where the impulsive load was applied 
presents the higher WC amplitude.

It is observed from Figs. 4a and 4b that the DWT-db8 could 
capture the damage on the region around where the impulsive 
load was applied. In those figures, the DWC-db8 assume the 
highest value around the damaged area (central point: x = 25 m, 
y = 0.20 m) and the originated signal from the plate under 
a damaged stage is also capable of estimating the damage 
location (Fig. 4b).

fo = −116 N; Dmax = 0.1718; Damage position: xref = 0.25 m and yref = 0.20 m.

Figure 4. Wavelet coefficients of the DWT-db8 transform in 
a flat distribution along the plate surface (a) and spatially (b) 
distributed for computing the plate’s dynamic signal.

Figure 5. Wavelet coefficients for CWT-db8 according to 
a flat distribuition (a) and spatially distributed (b) along the 
plate’s surface.
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was in turn verified from the minimum percent error value 
in directions x and y of the plate (εx = 1.88%, εy = 5.20%), 
obtained between the point where the damage has been 
manifested (position of load application, x = 0.25 m and 
y = 0.20 m) and the one from the mother wavelet db8. It 
can also be noted that the higher the DI values, the least 
the percent error.

From Tables 3 and 4, it is observed that the damage index 
SAHTM manifests the higher order of magnitude when 
compared to DWTAC and SAPS, considering both DWT 
and CWT.

Since the fourth vibration mode is the most appropriate 
for locating the damage (Tables 3 and 4), the obtained values 
DWTAC, SAPS and SAHTM, according to the vibration 
modes (Tables 3 and 4), are normalized with reference 
to the DI values from the fourth vibration mode of DWT 
and CWT. From that, it is possible to generate the data 
presented in Table 5, where the damage index that best 
identifies the appropriate vibration mode for locating the 
damage considering both CWT and DWT is SAPS, since 
the normalized DI (compared to the damage index from the 
fourth vibration mode) generally assume the lowest values 
for SAPS in relation to other indexes. Furthermore, it can 
be noted that the damage index DWTAC exhibited the 
closest numerical results for the 2 transforms, as stated 
previously. Although SAHTM was able to identify the most 
appropriate vibration mode for locating the damage and 
determining its correct position, this damage index also 
presented considerable difficulties for accomplishing that 
task in comparison with SAPS and DWTAC. This fact is 

vibration 
modes

Damage indexes
Peak 

coordinates (m)

DWtAc sAPs sAHtm xmax  ymax

1 0.0183 0.0035 0.0594 0.2037 0.1507

2 7.8676e-4 2.6362e-4 0.0162 0.2787 0.1507

3 2.9447e-4 2.7240e-4 0.0165 0.0015 0.1507

4 0.2570 0.1343 0.3664 0.2547 0.2104

5 0.0074 0.0198 0.1405 0.2787 0.2119

6 4.4020e-4 3.0917e-4 0.0176 0.0015 0.1507

7 0.0016 1.9700e-4 0.0140 0.0015 0.2134

8 0.0353 0.0389 0.1972 0.0015 0.0881

9 0.0082 8.1894e-7 9.0495e-4 0.0015 0.1567

10 0.0093 1.4981e-5 0.0039 0.2037 0.0672

Table 4. DI values from the first 10 first vibration modes of 
the continuous mother wavelet db8 and a = 2.

fo = −116 N; Dmax = 0.1718; Damage position: xref = 0.25 m and yref = 0.20 m.

directly applied to the fourth vibration mode of the plate 
under a damaged condition. The CWT translation coefficient 
(a) is equal to 2.

Just as in the preceding simulation involving CWT, DWT 
is also capable of determining the damaged area, assuming 
that the WC will reach high amplitudes in this location.

The relevance of selecting the appropriate vibration 
mode for detecting the damage can be verified from Table 4, 
where the DI values and damage location from the first 10 
vibration modes of CWT-db8, adopting a scale parameter 
(a) equal to 2. From this table, it can be noticed that all DI 
reach their maximum values in the fourth vibration mode, 
the one capable of detecting the damage location, which 

mode
DWt cWt

DWtAc sAPs sAHtm DWtAc sAPs sAHtm

1 0.071205 0.000989 0.031418 0.071206 0.026061 0.162118

2 0.003074 0.000330 0.018178 0.003061 0.001963 0.044214

3 0.001110 0.000318 0.017841 0.001146 0.002028 0.045033

4 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

5 0.028951 0.000621 0.024910 0.028794 0.147431 0.383461

6 0.001550 0.000375 0.019412 0.001713 0.002302 0.048035

7 0.005477 0.000022 0.004713 0.006226 0.001467 0.038210

8 0.132629 0.037391 0.193335 0.137354 0.289650 0.538210

9 0.031299 0.000004 0.002020 0.031907 0.000006 0.002470

10 0.036385 0.024928 0.157877 0.036187 0.000112 0.010644

Table 5. DI normalization with reference to the indexes from the fourth vibration mode, arranged by vibration mode.
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confirmed by noticing the high normalized damage values 
compared to the ones obtained from SAPS and DWTAC.

 According to Table 6, and in general terms, the wavelet 
transform DWT is the most appropriate for locating the 
damage, since its values of normalized DI have found to be, 
mostly, lower than the ones obtained from the wavelet CWT. 
However, this conclusion needs to be appraised carefully, 
since only 1 scale parameter (a = 2) was used to obtain the 
results presented in Table 4 (and consequently in Table 6) 
for the wavelet CWT. 

scale 
(a)

Damage indexes
Peak coordinates 

(m)

DWtAc sAPs sAHtm  xmax
ymax

2 0.2570 0.1343 0.3664 0.2547 0.2104

3 0.0023 1.2204e-4 0.0110 0.1438 0.0881
4 0.2740 0.4722 0.6872 0.2562 0.2104
5 0.0127 0.1560 0.3949 0.2562 0.2119
6 0.2169 0.2276 0.4771 0.2577 0.2104
7 0.1159 0.1918 0.4380 0.2577 0.2104
8 0.1871 0.2237 0.4730 0.2607 0.2104
9 0.2280 0.2983 0.5462 0.2607 0.2104

10 0.4384 0.2648 0.5146 0.2622 0.2090

Table 6. DI values according to different scale parameters 
using CWT-db8 applied to the fourth vibration mode.

fo = −116 N; Dmax = 0.1718; Damage position: xref  = 0.25 m and yref = 0.20 m.

Table 6 presents the damage location values obtained 
from CWT-db8, employing different scale parameters that 
vary from 2 to 10 and adopting the signal from the fourth 
vibration mode. From this table, it can be inferred the 3 DI 
reach relatively narrow values according to scale 3, which 
is not able to detect the damage location. Hence, DI may 
be used as a guidance of the most appropriate CWT scale 
parameters (a) for damage detection in damaged laminated 
composite structures.

COnCluSIOn

In SHM applications, the DWT-1-D and CWT-1-D are 
adopted for spatially decomposing the vibration modes of 
damaged composite structures, even though in a 1-D space. The 

WC obtained from this decomposition reach maximum values 
around the damaged area, which provides the approximate 
damage location.

It has been observed that the fundamental vibration mode 
(the very first one) is not necessarily the best for detecting 
the damage in laminated composite plates, since the high 
frequency modes are equally efficient considering the same 
goal. Thus, the analyzed DI (SAHTM, SAPS and DWTA) 
are crucial mathematical tools for pointing out the most 
desirable vibration mode for damage detection. 

It is worth noting that the signal is analyzed by DWT and 
CWT considering the structure under a damaged stage only, 
while the DI require signal information from both stages, 
damaged and non-damaged. It has been verified that the 
vibration mode pattern may accentuate the existent singularities 
in the wavelet coefficients.

Both DWT and CWT are capable of detecting the 
matrix damage location in damaged laminated composite 
structures, yet the continuous transforms demand that the 
scale parameters (a) must be established and, due to this 
fact, they present a relatively higher computational cost 
than discrete transforms. The DI presented herein may 
be used as a guidance on defining the mentioned scalar 
parameters. Hence, considering the 2 wavelet transforms, 
the discrete transform DWT, when associated to either 
DWTAC or SAPS, would be the most appropriate for the 
online identification of the matrix damage mechanism 
proposed and implemented herein.
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