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ABSTRACT: The original radar cross section data or some 
rough models are often used to estimate a given aircraft 
target detection probability. The calculation results may not be 
very accurate as targets are different from one another and 
the real radar detection process is complex. A new method 
for radar cross section model generation is proposed and it 
takes the random factors like air turbulence into account; this 
makes it conform to the reality. In addition, this radar cross 
section model can be directly applied to the radar detection 
process to calculate the detection probability of a specific 
aircraft at any attitude. Four typical aerial vehicles are taken 
as examples to demonstrate this method and information 
such as detection probability, signal to noise ratio and 
detection distance. Target’s instantaneous probability of being 
tracked, which corresponds to target’s detection probability, 
can also be calculated. Using these calculation results, we can 
compare two different aircrafts’ stealth performance in detail 
or optimize an aircraft’s flight path. 

KEYWORDS: Detection probability, RCS fluctuation, Stealth 
performance, Aircraft target.
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INTRODUCTION

It is a common practice that a radar cross section (RCS) 
of a target is interpreted as the target’s stealth performance 
or its detection probability by hostile radar. We all know that 
an aircraft with RCS value of σ = 0.1 m2 sounds better than 
one with σ = 1 m2, but nobody can promise us that the first 
performs better than the latter in front of a really working 
radar, as radar detection process is probabilistic. The detection 
probability is influenced by many random factors, such as the 
radar system’s parameters, the natural environment and most 
of all, as well as the RCS fluctuation characteristic of the target.

Radar system designers have utilized RCS fluctuation 
models to indicate a certain kind of targets for a long time. 
Plenty of researching work has been done and classical models 
like Swerling models, chi-square models etc. have been widely 
used (Shnidman 1995, 2005; Swerling 1960; Scholefield 1967). 
But all these models are meant to estimate a radar system’s 
detecting performance, not the stealth performance of 
an aircraft target. If those models are directly used on a 
specific aircraft, the process is somehow tedious and may 
cause great errors in model building (Johnston 1997).

However, we definitely need to know the detection probability 
of a specific aircraft. RCS is the fundamental parameter of an 
aircraft, whereas the detection probability is a parameter more 
important and intuitive. In a real combat situation, detection 
probability, along with target’s RCS fluctuation characteristic, radar 
detection distance, false alarm probability, signal to noise ratio 
(SNR) etc. should all be taken into consideration. These parameters 
can give us a more objective evaluation on the stealth performance 
of a specific aircraft. Researchers studying the optimal path 
planning for aerial vehicles are the representative ones who 
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care about real combat situations. When optimizing aircraft’s 
flight path in a radar threatening situation, they need to know 
the stealth performance of the aircraft, as accurately as possible. 

A lot of literature about path planning has been published. 
The early studies always treat the threatening radar as obstacles 
(Goerzen and Mettler 2010; Xu et al. 2010), which means the 
target’s detection probability is either 0 or 100%. Some researchers 
proposed aircraft’s dynamic RCS models which deal with RCS 
both in azimuth and bank angles (Moore 2002; Bortoff 2000; 
Hebert 2001; Kim and Bang 2007), but they did not give any analysis 
on detection probability. Dogan (2003) and Wu et al. (2011) used 
probabilistic map to estimate the detection probability; the map is 
defined as the risk of exposure to the radar threats. And the risk 
is a function of target’s position. But this map is rough and cannot 
represent a specific target accurately. Misovec et al. (2003) and Inanc 
and Muezzinoglu (2008) built a detection model using two different 
tables, which contain some parameters about the aircraft as well 
as the radar system. They also gave an approximation function to 
express the detection probability. Parameters in both tables are 
also very general and only represent a certain kind of targets; when 
dealing with a specific aircraft, they may bring unexpected errors. 

A popular model for calculating the target’s detection proba- 
bility was firstly proposed in Zeitz’s doctoral dissertation (Zeitz  
2005). He derived an approximation function of target’s instantane- 
ous probability of being tracked. Many researchers prefer to use 
his function to calculate the aircraft’s probability of being tracked 
and then optimize the aircraft’s flight path based on the calculation 
results (Ding et al. 2008; Liu et al. 2012; Mo et al. 2014; Kabamba 
et al. 2006). This function considers many variables such as target’s 
RCS values, false alarm probability, SNR and radar system’s working 
settings. It also has a precise approximation expression, so it can 
give an accurate detection probability for any given RCS data.

The purpose of this paper is not to develop a new or improve 
an old path planning method. We focus on the aircraft’s stealth 
performance evaluation, from the perspective of detection 
probability. The calculation results will be useful if we want to 
know a specific aircraft’s stealth performance in a real combat 
situation, and they can also be used in path planning optimizations.

SINGLE-PULSE DETECTION 
PROBABILITY OF RCS FLUCTUATING 
ZEiTZ’S FunCTiOn

As Zeitz’s function is efficient in detection probability 
calculation and is widely used in estimating aircraft’s stealth 

performance, we will analyze his function in this subsection. 
The first variable in his function is the SNR, as defined in Eq. 1:

where: 
Sr is SNR; σ is target’s RCS; R is the distance between 

radar and target; and K is a constant indicating radar system’s 
processing ability.

In fact, this equation is the derivation of the basic radar 
equation and no probabilistic variable is involved here.

The second variable is the detection probability, PD, expressed 
as a function of SNR and false alarm probability, Pfa, as shown 
in Fig. 1 (Zeitz 2005). 

This figure actually shows the single pulse detection 
probability of a signal with unknown phase but known amplitude 
(Difanco and Rubin 1968). The analytical expression of PD can 
be written as:

where:
rb is the detection threshold; r is an intermediate variable; 

Sr
 is SNR; and I0 is the modified Bessel function of the first 

kind and order zero.
The SNR here can be expressed as Eq. 3 and it has no 

matter with Eq. 1.

where:
E is the signal energy and N0/2 is the two-sided white Gaussian 

noise spectual density. Sr here is equal to the ratio of maximum 
instantaneous signal power to average noise power out of a 
matched filter (Difanco and Rubin 1968), and SNR in Zeitz 
(2005) is equal to the ratio of average instantaneous power to 
average noise power. So there exists a 3 dB discrepancy between 
figures drawn by Eq. 2 and Fig. 1, when Pfa value keeps the same.

Then a probability of track loss, z[n], is defined as a recursion 
expression:

(1)

(2)

(3)

(4)
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where:
n is the transmitting pulses number and l is the consecutive 

misses number, being n > l and l > 2; Pm is the missing probability, 
being Pm = 1 – PD.

The instantaneous probability of being tracked, Ptrack, can 
then be expressed as Eq. 5 and its approximation function can 
be expressed as Eq. 6. The average probability of being tracked 
during a time interval, ΔT, can be expressed as Eq. 7.

Figure 2. Optimum detector for a single pulse.

BASiC STEpS OF DETECTiOn pROBABiliTY 
CAlCulATiOn 

A simplified optimum detector for a single pulse of known 
amplitude and unknown phase can be illustrated in Fig. 2 
(Difanco and Rubin 1968).

When the target is absent, the probability density function 
(PDF) of the intermediate variable, r, can be expressed as Eq. 8. 
This intermediate variable, r, is the output of a typical radar 
receiver’s envelope detector.

And, according to its definition, the false alarm probability 
can be expressed as:

If the Pfa value is given, the threshold can be solved by Eq. (9) 
and expressed as: 

When the target is present, the PDF of r can be expressed as:
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Figure 1. Detection probability versus SNR and false 
alarm probability.

Then the detection probability, PD, can be expressed as Eq. 2. 
When target’s RCS fluctuation characteristic is taken into considera-
tion, the amplitude of the back scattering pulse changes with RCS. 
Equation 2 should be averaged with respect to amplitude statistics as:

(8)

(9)

(10)

(5)

(6)

(7)

(11)

(12)

where:
c1 and c2 are radar constants; t is time; τ is the time increment.
Equations 4 and 5 combine Ptrack and PD. Equation 6 uses 

Eq. 1 as its SNR variable to connect Ptrack, R and σ, though 
the theoretical SNR should be Eq. 3. This substitution of SNR 
may cause extra calculation error. 

PD in Eq. 2 is derived on assumption that the amplitude of 
the signal to be detected is already known, which means the 
target’s RCS value is a known constant in this equation, and no 
matter how many pulses are transmitted, the back scattering 
pulses will keep the same amplitude. This assumption does not 
take the RCS fluctuation characteristic into account, which 
may bring some errors in PD calculation and in the following 
Ptrack calculation.
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where;
A is the back scattering pulse amplitude; p(A) is the PDF of A. 
When the RCS data of the aircraft target is known, p(A) 

can be obtained using the simple Eq. 13:

method described here can also be applied to RCS data obtained 
both in azimuth and elevation angles.

Figure 3 shows the framework of target’s RCS model 
generation: σ0 of the original RCS data corresponds to the 
azimuth angle θ0; σi (i = 1, 2, …, m) corresponds to an azimuth 
angle θi; θi is from an azimuth angle domain, θ0 – Ψ ~ θ0 + Ψ, 
whose center is at θ0, and θi is different from θ0; m + 1 is the total 
number of RCS values in this angle domain. This domain should 
be small enough if the aircraft flies relatively steadily. It is 
intentionally exaggeratedly drawn in Fig. 3 just for convenience. 

Target’s original 
RCS data at and 

around θ0

PDF of normal 
distribution

Probabilistc RCS 
data presented to 
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Figure 3. Framework of RCS model generation. 

The normal distribution in Fig. 3 is the one-dimensional 
normal distribution. The expectation value of x in the normal 
distribution is set to be 0, and the standard deviation is set to 
be 1. Both set values will not influence the calculation results 
because what matters is the probability value of x, not the value 
of x itself. So the distribution can be expressed as:

Equation 14 can be used to generate a series of random 
values of x. Each x value corresponds to a specific angle value 
and, consequently, a specific RCS value. The range of x in 
Eq. 14 is limited to be –3 ~ 3 because p(x) decreases to nearly 0 
beyond x = ± 3. So the curve of p(x) can be truncated at x = ± 3; 
this means x = ± 3 exactly corresponds to the two extremes of the 

(14)

(13)

where:
a is a constant depending on radar system’s working 

parameters, such as transmitting power, antenna gain etc., 
and the distance R.

Radar experts prefer to use a fluctuation model, like a 
Swerling model, in Eq. 12 to estimate the radar system’s detecting 
performance when facing a “Swerling” target. If we want to 
know a specific aircraft’s detection probability, we can directly 
use the discrete RCS data of the aircraft to generate a p(A) and 
substitute it into Eq. 12 to obtain target’s single pulse detection 
probability. This method can give a more accurate PD.

DETECTION PROBABILITY OF A 
SPECIFIC AIRCRAFT
TARgET’S RCS MODEl gEnERATiOn

When radar experts use classical fluctuation models to 
analyze radar system’s performance, they do not need to know 
the exact attitude domain of the target. When aerospace experts 
use approximation models to analyze a specific aircraft’s detection 
probability, they always assume that every attitude angle of the 
target has an equal probability of being presented to the radar 
(Robinson 1992; David 2007). This assumption is not always the 
reality and will bring some trouble in PD calculation accuracy.  

Our purpose is to calculate the PD of a specific aircraft at a 
given angle θ0. We need to know the RCS value corresponding 
to that given angle as well as other RCS values around that 
angle, because an aircraft in flight will always experience 
turbulence and other micro motions, and target’s RCS varies 
dramatically even with a small change in attitude (Paterson 
1999). Taking into account these random factors, we assume 
that these RCS values obey the normal distribution when 
presented to the radar.

When the aircraft is cruising, the elevation angle between 
target and radar does not change as much as the azimuth angle, 
and the RCS in this small elevation angle domain varies not 
so dramatically as it does in the azimuth angle domain. For 
simplicity, we only analyze RCS data in azimuth angle. The 
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azimuth angle domain, respectively. The extremes are set to 
be θ1 and θm, and their corresponding RCS values are σ1 and σm. 

The “normrnd” function of MATLAB can be used to conduct 
this random process and generate a series of x values which obey 
the normal distribution. Using these x values, a series of RCS 
values can be obtained from the corresponding angle domain, 
as shown in the third frame of Fig. 3. These probabilistic RCS 
values presented to the radar are much different from the original 
one. σ0 may appear much more times than σi. And the PDF of 
these random RCS values is different from that of the original 
ones. This PDF can then be used to calculate PD.

The variable presented in Fig. 3 is σ ; when applied to numerical 
calculation, the variable A is preferred, the derivation is the same 
as that of σ, and Eq. 13 can be used to obtain p(A) conveniently.

nuMERiCAl CAlCulATiOnS AnD AnAlYSiS
In order to demonstrate our method, we choose four 

different types of aerial vehicles and obtain their RCS data 
by self-programmed software which is based on the physical 
optics (PO), equivalent current method (ECM), physical theory 
of diffraction (PTD) and shooting and bouncing ray method 
(SBR). There are unavoidable errors in the RCS simulation 
results and we can never know the real RCS of a real aircraft 
like F-117A. However, our purpose is not to get an accurate RCS 
value of a target; we care more about target’s RCS fluctuation 
characteristic and this self-programmed software can give a 
satisfactory prediction about target’s RCS fluctuation trend.

Figure 4 shows the RCS calculation mockups. SDM means 
self-designed missile. It is just an imaginary one and can be 
classified as a stealth vehicle like F-117A as it obeys the basic 
stealth designing principles. X-21 is a big and conventional 
aircraft manufactured by Northrop and F-16 is a small and 
conventional aircraft.

RCS calculation is conducted at L band, which is often 
used in ground-based searching radars (Paterson 1999). The 
polarization direction is horizontal. The calculation angle interval 
is 0.1°. The azimuth angle domain is set to be θ0 – 3° ~ θ0 + 3°.

Figure 5 shows the RCS values of these four targets. θ = 0° 
corresponds to each target’s head direction. We can see that 
F-117A and SDM have comparably small RCS values; most of 
their RCS values are smaller than 0 dB.m2. X-21 and F-16 have 
higher RCS values; most of their RCS values are much higher 
than 0 dB.m2. Figure 5 cannot tell us the specific detection 
probability, method mentioned in the previous sections can 
be used to obtain a specific detection probability.

Firstly, Monte-Carlo (MC) method is used to generate the 
PDF of the back scattering pulse’s amplitude. The first step is to 
generate a series of random values using “normrnd” function, 

(a) F-117A (b) SDM

(d) F-16(c) X-21
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Figure 4. RCS calculation mockups.
Figure 5. Targets’ RCS polar curves. (a) F-117A; (b) SDM; 
(c) X-21; (d) F-16.

(d)

(c)

(b)

(a)



J. Aerosp. Technol. Manag., São José dos Campos, Vol.7, No 3, pp.314-322, Jul.-Sep., 2015

319
Calculation of Aircraft Target’s Single-Pulse Detection Probability 

as described in the previous section. This function should be 
run enough times to generate enough x values to cover the 
whole range of –3 ~ 3 and, consequently, the whole range of 
θ0– 3° ~ θ0+ 3°. We have conducted a lot of calculations, and 
the empirical repeating times for “normrnd” function is about 
10,000 ~ 15,000. Then a steady PDF of these RCS values can 
be obtained, and this PDF can be used in Eq. 12 to obtain PD 
corresponding to the azimuth angle of θ0. 

Figure 6 shows the influence of repeating times, N, on the 
PDF curve’s steadiness. Er indicates the difference between 
the PDF of N = 20,000 and the PDF when N ≠ 20,000. It is 
shown that when N exceeds about 10,000, the difference 
between 2 PDF curves is very small. The RCS data used here is 
from the azimuth angle domain 64° ~ 70° of F-117A, but the 
conclusion is correct when the target or angle domain changes. 
Er is defined in Eq. 15:

in RCS data range. This will lead to a difference in PD values. In 
this case, when the random process is considered, the result is 
PD = 0.45 and when random process is not considered, PD = 0.53. 
SNR is about 14 dB and false alarm probability Pfa = 10-6, for 
both cases. If PD = 0.50 is the threshold to declare a single pulse 
detection, these 2 PDFs will bring different conclusions.

Figure 8 shows the relationship between SNR and PD for 
the conventional target X-21 and the stealth missile SDM. 
θ = 0° corresponds to the head direction. PD generally 
changes with SNR. The PD of X-21 can always exceed 0.5 in 
the head direction, normal direction of leading edge, fuselage 
side direction and tail direction. In other directions, its PD is 
very small. As to SDM, its PD can always keep an even smaller 

Figure 6. Influence of N on the PDF curve’s steadiness (data 
from F-117A).
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Figure 8. Relationship between SNR and PD (Pfa = 10-6). 
(a) X-21; (b) SDM.

(15)

where:
pN is the PDF when N ≠ 20,000; p0 is the PDF when 

N = 20,000; i (i = 1, 2, …, k) indicates the discrete point of the 
PDF curve.

When the random process is conducted, the PDF of the 
back scattering values may be very different from the original 
one. Figure 7 shows the PDF of RCS from the angle domain of 
64° ~ 70° of  F-117A. The solid line indicates PDF after conducting 
random process on the original data and the dotted line indicates 
PDF without random process, which means every RCS value in 
the original data have an equal probability to be presented to the 
radar. Two PDF curves are different either in configuration or 

(a)

(b)
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value at all angles except those near the side direction. Radar 
working parameters for both vehicles are the same and the 
normalized detection distance of X-21 is twice that of SDM. 
If the working parameters of hostile radar are known, we can 
calculate target’s detection probability at any given distance and 
we are able to obtain the exact values of PD, SNR, Pfa and R. We 
can also compare two different targets’ stealth performance in 
the same threatening situation. The calculation results can help 
a lot on optimizing a flight path.

For a specific target, if more data about PD, SNR, Pfa and 
R are obtained, a complex polar curve can be drawn. Figure 9 
gives an example for the stealth aircraft F-117A and conventional 
aircraft F-16. For each target, the radar is set to be at three 
different distances, with some certain working parameters. 
The detection distance R is normalized here because SNR varies 
with detection distance as well as radar transmitting power, 
radar antenna gain etc. If the transmitting power here is 200 W, 
the antenna gain is 30 dB, and other loss factors are set as 
common values; 1.0 R is about 15 km and the average SNR 
is about 15 ~ 20 dB. If the working parameters change, PD 
will change but the configuration and trend of its curve will 
not change too much.

Figure 9(a) shows that F-117A performs well in the direction 
between about θ = 0° ± 60°. This is an important angle domain to 

a military aircraft. It also performs well in its tail direction between 
about θ = 180° ± 65°. PD in both domains is much smaller 
than 0.5 and the target can be regarded as perfectly stealthy. 
In the side direction between about 60° to 115°, F-117A performs 
not so well, PD can always exceed 0.5, but if the detection distance 
increases (so SNR decreases), PD will decrease fast synchronously 
in the whole angle domain.

Figure 9(b) shows that F-16 has a very low PD in the direction 
between about θ = 0° ± 40°. This sounds good but may not be 
the reality because the RCS calculation mockup of F-16 assumes 
that its cockpit and radar cabin have smooth surfaces from the 
perspective of electromagnetic. And RCS of its inlet may not be 
calculated accurately because of mockup’s simplification. In fact, 
the real F-16 fighter plane does not have these smooth surfaces, 
cockpit and radar cabin are just 2 strongest RCS scatters on it. 
PD in the tail direction is big because F-16’s nozzle does not 
have any stealth optimization measures. In the side direction 
between about 40°, which is just the normal direction of its 
wing’s leading edge, and 135°, F-16 has a very big PD, and if the 
detection distance increases (and SNR decreases), PD decreases 
not so dramatically and not synchronously, which is different 
from that of F-117A. 

So, for a conventional aircraft like F-16 and a stealthy aircraft 
like F-117A, when they are close to a hostile radar, they perform 
almost the same from the perspective of detection probability. 
But when they get farther away from the radar, the difference 
becomes obvious; F-16 still keeps a high PD value in a broad 
azimuth angle domain, which means it can be easily detected. 
But the PD value of F-117A decreases fast in a broad angle 
domain, which means it gets undetected quickly.

The false alarm probability here is set to be Pfa = 10-6. If we 
spend more time, we can draw a more complex figure for a 
specific target, where PD varies with SNR, Pfa, and target’s attitude 
angle, like figures that often appear in radar detection textbooks.

From Fig. 9 and the possible more complex figures, we can 
obtain very rich and relatively accurate information about a 
specific aircraft’s stealth performance in front of threatening 
radars. This is the advantage of our method over other general 
detection models or basic RCS models.

Then we would like to discuss the instantaneous tracking 
probability, Ptrack, as mentioned in “Zeitz’s Function” section. 

The appendix of Zeitz (2005) gives the detailed derivation of 
Ptrack. It is a recursive expression and can be solved by recursive 
method. PD is assumed to be a constant here; l and n are system 
constants. 

Figure 9. Target’s azimuth detection probability at different 
distances (Pfa = 10-6). (a) F-117A; (b) F-16.

(a)

(b)
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Figure 11. Target’s PD and Ptrack in a simple combat situation 
(n = 30, l = 5, Pfa = 10-6). 

We choose a simple but representative situation to demonstrate 
the calculation results. The target is flying from a longitudinal 
distance of y1 = 9.90 R0 towards the radar at a cross distance of 
x0 = 4 R0  (R0 is a normalized distance). The azimuth angle between 
radar and target is θ1 = 22° when the target is at (x0, y1), and 
yi (i = 2, 3, …, 69) is chosen to be 9.42 R0, 8.98 R0, 8.58 R0 etc. to 
make sure that their corresponding azimuth angles are θ2 = 23°, 
θ3 = 24°, θ4 = 25°, until θ69 = 90°. PD,i and Ptrack,i are the detection 
and tracking probabilities at (x0, yi) (i = 1, 2, …, 69), and their 
curves are shown in Fig. 11. The peaks at about y = 7.8 R0 and 
y = 6.0 R0 correspond to the normal directions of the wing’s 
leading edge and the horizontal tail’s leading edge, respectively. 
When X-21 is far from the radar, its PD and Ptrack are low, except 
the peaks. When it is close to the radar, its PD and Ptrack become 
higher due to a larger RCS value and a larger SNR. 

The average value of being tracked during its flying 
time can be calculated based on the discrete Ptrack values. As 
Δyi = y + 1 - y decreases with i, the integration time corresponding 
to each Ptrack,i (i = 1, 2, …, 69) decreases with i, if the target 
has a constant velocity. The flight path is divided into 3 phases 
here for simplicity; each phase corresponds to a distance of 
3.3 R0, and their average Ptrack values are 0.08, 0.11 and 0.68, 
respectively. 

Equations 4 and 5 can be used to calculate a specific target’s 
Ptrack when PD is obtained. We can directly use those discrete PD 

values in this equation, so does Pm. Each Ptrack corresponds to 
the same azimuth angle as PD. 

Figure 10 is an example based on the data of Fig. 9. The 
detection distance is set to be a constant, R0. The radar system’s 
constants are n = 30 and l = 5; if we want to know more results, 
R, n and l can be adjusted conveniently. Figure 10 shows that 
both aircrafts’ Ptrack curves have nearly the same trend as their 
PD curves in Fig. 9, and F-117A performs better almost in all 
directions, except in its leading edge’s normal direction. When 
the detection distance increases, the Ptrack of F-117A decreases 
fast and synchronously in the whole angle domain just as curves 
in Fig. 9(a). And the Ptrack of F-16 decreases not so dramatically 
and not synchronously when the detection distance increases, 
just as curves in Fig. 9(b).

Figure 10. Target’s instantaneous tracking probability in 
azimuth angle. 
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If we want to calculate the average tracking probability in a 
certain time interval, we just need to integrate the Ptrack values 
over the time interval and average the results, as shown in Eq. 7. 
Note that, in a specific combat situation, target’s attitude angles 
may have different time periods of being presented to the radar, 
so the Ptrack values corresponding to each angle may be integrated 
with different time periods. 

A CAlCulATiOn ExAMplE 
A calculation example using the RCS data of X-21 is given in 

Fig. 11 to illustrate how detection and tracking probabilities vary 
with target’s distance and azimuth angle in a combat situation. 

(16)
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CONCLUSIONS

The calculation of single pulse detection probability for 
RCS fluctuation targets has been analyzed and a new RCS 
model generation method has been proposed as the basis 
of the calculation. This method takes random factors like 
target’s micro motions and air flow turbulence into account, 
so it conforms better to the reality. The RCS model can be 
directly used to calculate the detection probability of any 
specific aircraft at any attitude. Some typical aerial vehicles are 

taken as examples to illustrate this method. The instantaneous 
probability of being tracked has also been introduced and 
it can be calculated if the detection probability is obtained. 
By this method, the single pulse detection probability and 
instantaneous probability of being tracked for a specific target 
can be calculated conveniently. Very rich information such as 
detection probability, false alarm probability, SNR, detection 
distance etc. can be obtained. Using this information, we can 
compare two different targets’ stealth performance or optimize 
a target’s flight path. 
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