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ABSTRACT: The work is a study of conservation on linearization 
techniques of time-marching schemes for the unstructured 
finite volume Reynolds-averaged Navier-Stokes formulation. 
The solver used in this work calculates the numerical flux 
applying an upwind discretization based on the  flux vector 
splitting scheme. This numerical treatment results in a very 
large sparse linear system. The direct solution of this full 
implicit linear system is very expensive and, in most cases, 
impractical. There are several numerical approaches which 
are commonly used by the scientific community to treat sparse 
linear systems, and the point-implicit integration was selected 
in the present case. However, numerical approaches to solve 
implicit linear systems can be non-conservative in time, even 
for formulations which are conservative by construction, as 
the finite volume techniques. Moreover, there are physical 
problems which strongly demand conservative schemes in 
order to achieve the correct numerical solution. The work 
presents results of numerical simulations to evaluate the 
conservation of implicit and explicit time-marching methods 
and discusses numerical requirements that can help avoiding 
such non-conservation issues.

KEYWORDS: Computational fluid dynamics, Time 
marching methods, Flux vector splitting scheme, 
Conservative discretization.
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INTRODUCTION

This work discusses issues associated with the coupling of 
implicit integration methods, for unstructured finite volume 
formulations, with the spatial discretization based on flux 
vector splitting schemes. The material discussed in the work 
is an extension of the work of Barth (1987). The original paper 
discussed the approximate local time linearizations of nonlinear 
terms for the finite difference formulation using Total Variation 
Diminishing (TVD) (Harten, 1983) and upwind algorithms. 
Here, the time conservation of the point-implicit integration 
for unstructured meshes is analyzed and discussed. Finite 
volume formulations have the tremendously important property 
of being conservative by construction. However, some time 
integration approaches may present numerical issues that can 
destroy this property, at least for unsteady applications or during 
the process of converging to a steady state. This shortcoming 
was observed when performing simulations of the flow inside 
closed systems in which there is no addition or extraction of 
fluid mass to/from the system. For such systems, the use of the 
point-implicit schemes discussed in this present paper has led to 
heat generation and non-conservation of mass in the interior of 
the computational domain. Results of simulations using explicit 
and implicit integration methods are presented in the present 
paper in order to better understand the non conservation issue 
of the time-marching methods. An analysis of the problem 
is also performed by a detailed study of the backward Euler 
method linearization.
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THEORETICAL FORMULATION

Th e formulation used in the present work is based on the 
Reynolds-averaged Navier-Stokes set of equations, also known 
by the Computational Fluid Dynamics (CFD) community as the 
Reynolds Averaged Navier-Stokes (RANS) equations. Th e RANS 
equations are obtained by time fi ltering the Navier-Stokes set 
of equations. Th e compressible RANS equations are written in 
the algebraic vector form as

. (1)

Th e conserved variables vector, Q, the inviscid fl ux vector, Fe, 
and the viscous fl ux vector, Fv, are given by

, (2)

, (3)

, (4)

in which ρ stands for density,  for the velocity 
vector in Cartesian coordinates, p for static pressure, τ for viscous 
stress tensor, qH for heat fl ux vector, e for the total energy per 
unit volume and βi is given by

. (5)

Th e îx, îy and îz terms are the Cartesian-coordinate orthonormal 
vector basis. It is very important to emphasize that fi eld forces, 
such as gravity, are neglected here.

Other equations are necessary in order to close the system 
of equations given by Eq. (4). Th ese additional equations are 
called constitutive relations. Th e fi rst constitutive equation 

presented to close the Navier-Stokes set of equations is known 
as the equation of state. Th is equation considers the perfect gas 
law, and it is written as

, (6)

in which the mean total energy per unit volume, e, is given by

, (7)

and ei stands for internal energy, defi ned as

, (8)

in which T stands for the mean static temperature and Cv is 
the specifi c heat at constant volume. Th e heat fl ux from Eq. (5) 
is obtained from the Fourier law for heat conduction, and it 
is given by

, (9)

in which γ is the ratio of specifi c heats and Pr is the Prandtl 
number. Typically, for air, it is assumed that γ = 1.4 and 
Pr = 0.72. Cp is the gas specifi c heat at constant pressure and μ 
is the dynamic molecular viscosity coeffi  cient, calculated as a 
function of the temperature by the Sutherland law equation 
(Anderson, 1991), written as

, (10)

where S = 110K , and µ∞ is the dynamic molecular viscosity 
coeffi  cient of the fl uid at temperature T∞. 

Th e components of the viscous stress tensor, for a Newtonian 
fl uid, are given by 

, (11)

in which δij stands for the Kronecker delta.

NUMERICAL FORMULATION

Th e numerical formulation applied in this work is briefl y 
presented in this section. Th e study is performed using the 
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RANS equations discretized in the context of a cell-centered 
finite-volume. The solver used in the present work is Le 
Michigan Aerothermodynamics Navier-Stokes Solver (LeMANS). 
Th e original framework was developed by Scalabrin (2007) at the 
University of Michigan to simulate hypersonic fl ows over reentry 
capsules. It is a three dimensional (3-D) numerical solver that 
uses the fi nite volume formulation for unstructured meshes to 
solve the RANS equations coupled with non-equilibrium chemical 
reaction equations and the Spalart-Allmaras (SA) turbulence 
model (Spalart and Allmaras, 1992; 1994). Th e numerical fl ux is 
calculated using an upwind scheme based on the Steger-Warming 
fl ux vector splitting (Steger and Warming, 1981). Th e time 
integration is performed by point implicit and Runge-Kutta 
methods. Th is section describes the numerical formulations 
and discretizations applied in the present work. 

FINITE VOLUME FORMULATION
The finite volume formulation is a numerical method 

applied to represent and evaluate partial diff erential equations. 
It is applied by the CFD community to fi nd the solution of 
the RANS, equations. Th e method is obtained integrating the 
fl ow equations for each control volume within a given mesh. 
Th e RANS equations, written in the context of a cell-centered 
fi nite-volume formulation, are given by

. (12)

Considering a cell-centered formulation, Vi is a given cell of 
the given grid. Aft er the integration it is possible to apply the 
Gauss theorem over the equation above, resulting in:

, (13)

in which Si is the outward-oriented area vector and it is defi ned as

. (14)

Considering the mean value of the conserved variables 
within the i-th control volume, one can write the fi rst term 
of Eq. (13) as

. (15)

Th e second term of Eq. (13) can be written as the sum of all 
faces of a cell

, (16)

in which the k subscript is the index of the cell face, and nf 
indicates the number of faces of the i-th volume. Finally, the 
RANS equations discretized with a fi nite volume approximation 
are given by

. (17)

For this formulation, the fl uxes are computed at the faces of 
the control volume, and the conserved variables are computed 
in the cell.

INVISCID FLUX CALCULATION
Th e inviscid fl uxes are calculated using a method based on 

a classical fl ux vector splitting formulation, the Steger-Warming 
Scheme (SW) (Steger and Warming, 1981). Th is method is an 
upwind scheme which uses the homogeneous property of the 
inviscid fl ux vectors to write 

, (18)

where Fen is the normal flux at the k-th face, and A is the 
Jacobian matrix of the inviscid fl ux which can be diagonalized 
by the matrices of its eigen vectors from the left  and from the 
right, L and R

A = R Λ L , (19)

and Λ is the diagonal matrix of the eigenvalues of the Jacobian 
matrix. Th e A matrix can be split into positive and negative 
parts as 

A+ = R Λ+ L and A− = R Λ− L . (20) 

Th e splitting separates the fl ux into two parts, the downstream 
and the upstream fl ux, in relation to the face orientation as:

, (21)

where the cl and cr subscripts are the cells on the left  and right sides 
of the face. Th e split eigen values of the Jacobian matrix are given by 

, (22)
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In order to avoid sudden sign transition, and then discontinous 
derivative, the split eigen values receive a small number, ε , 
turning Eq. (22) into

. (23)

Th e soft en sign transition turns the derivative continous at the 
transition point. 

Numerical studies performed in the present work 
indicated that this flux vector splitting is too dissipative and 
it can deteriorate the boundary layer profiles (Junqueira- 
Junior, 2012; Junqueira-Junior et al., 2013; MacCormack and 
Candler, 1989). Therefore, a pressure switch is implemented 
to smoothly shift the Steger-Warming scheme into a 
centered one. Then, the artificial dissipation is controlled 
and the numerical stability is maintained, as presented in 
the following formulation:

. (24)

in which

 (25)

Th e switch, w, is given by

, (26)

where ∇p is a scalar number, a numerical approximation of the 
pressure gradient. For small ∇p,  = (1 −  ) = 0.5, the code runs 
with a centered scheme, and for larger values of ∇p,  = 0 and
(1 − ) = 1, the code runs with the original Steger-Warming 
scheme. For Eq. (26) one suggests α = 6, but some problems 
may require larger values (Scalabrin, 2007).

Th e applied formulation was originally created with interest 
on studying fl ows over reentry capsules. For such particular 
cases, with very strong shock waves, it is very common to fi nd 
solutions with numerical and non-physical structures such as 
carbuncles (Ramalho et al., 2011). To avoid such numerical 
problems, artifi cial dissipation has to be added to the method. 
Th e dissipation was included into the split eigenvalues, Eq. (23), 
using an ε factor, which is given by:

 (27)

where dk is the distance of the k-th face, to the nearest wall 
boundary. d0 is set by the user and must be smaller than 
the boundary layer thickness and larger than the shock 
stand-off distance.  is the normal vector of the nearest 
wall, and  is the normal vector to the k-th face. Equation 
(27) applies the term  to decrease the value 
at the faces parallel to the wall inside the boundary layer 
(Scalabrin, 2007). This artificial dissipation model has 
shown an important role in the prediction of boundary 
layer profiles (Junqueira-Junior, 2012; Junqueira-Junior 
et al., 2013).

VISCOUS FLUX CALCULATION
Th e viscous terms are based on derivative of properties 

on the faces. To build the derivative terms, two volumes are 
created over the face where the derivative is being calculated. 
At the center of each new volume, the derivative is calculated 
using the Green-Gauss theorem. Th is computation is used to 
fi nd the derivative at the desired face.

A two dimensional (2-D) example is used in this section 
to better explain the derivative calculation. Consider the two 
cells, S1 and S2, in Fig. 1. Two new cells, S3 and S4, are created 
using node points, P1 and P3, and cell centered points, P2 and 
P4, to calculate the derivative on 1-3 face. Th e properties at 
the faces are calculated using simple averages. For example, in 
Figs. 1 and 2, the properties are given by

 (28)

. (29)

Considering ∇Q as a constant over the cell, the equation 
above yields 

, (30)
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in which ∇Q is the constant cell-centered gradient. Using the 
derivatives in the S3 and S4 cells, the derivative at faces 1-3 is 
computed using

. (31)

The derivative computation for other types of element,
2-D or 3-D, is straightforward.

TIME INTEGRATION
Th e explicit second-order Runge-Kutta (Lomax et al., 2001) 

and the point implicit scheme are the two time-marching 
methods applied in the present work.

Th e second-order Runge-Kutta integration method used 
in this work is given by

 (32)

In order to simplify the forthcoming equations, the right 
hand side of Eq. (32) is written as 

 (33)

in which Rcl is the residue of the i-th cell.

Th e implicit integration applied in the present work is based 
on the backward Euler method, which is given by

. (34)

One can linearize the residue at time n + 1 as a function of 
properties at time n. 

, (35)
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Figure 1. 2-D example of new volume creation. Figure 2. 2-D example of derivative calculation.
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From the spatial discretization, the inviscid terms can be 
written as 

 (36)
             

It is a common practice to assume

, (37)

and then write

 (38)

which is not true and different from the real definition of the 
Jacobian matrix written in Eq. (20). Using the approximate 
form, Eq. (38) to calculate the inviscid terms may decrease 
the numerical stability of the method. Hence, in this work, 
the true Jacobian matrices of the split fluxes, given by 
Eq. (20), are implemented in order to calculate the implicit 
operator. The approximate Jacobian matrices, which are 
calculated using Eqs. (37) and (38), are implemented at 
the right hand side of the linear system. Issues involving 
the true Jacobians matrices have a major importance 
in the context of numerical stability for computational 
methods (Anderson et al., 1986; Hirsch, 1990; Steger and 
Warming, 1981).

Th e viscous terms can be written in the same form as

 (39)

In this work, the viscous Jacobian matrices are represented by 
B. Hence, the Jacobian matrix splitting is written as

. (40)

One can write the system as

 (41)

It is, then, possible to write

, (42)

with

, (43)

. (44)

and

. (45)

As the code is an unstructured solver, this system of equations 
results in a sparse block matrix, where each block is a square 
matrix of size equal to the number of equations to be solved in 
each control volume. Th e solution of such system is typically 
very expensive and, depending on the size of the mesh, it is not 
even practical. A less expensive implicit method is applied in 
the present work, the implicit point integration (Gnoff o, 2003; 
Venkatakrishnan, 1995; Wright, 1997).

Th e main idea of the implicit point integration is to move 
all the off -diagonal terms to the right hand side and to solve 
the resulting system iteratively, i.e.,

. (46)

It is assumed that ∆Q n+1.0 = 0 and four iterations are taken in the 
process as suggested in the literature (Wright, 1997). Th e given 
sparse linear system illustrates the point 
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where each ☐ is a 5 × 5 block matrix.
Th e time step is computed by 

, (47)

in which CFL is a parameter set to ensure the stability of the 
time integration method, l is the size of the cell and 
is the largest wave speed in the cell. 

BOUNDARY CONDITIONS 

Th e boundary conditions are implemented using ghost cells. 
Th e solver creates the ghost cells to hold properties that satisfy the 
correct fl ux calculation at the boundaries. Th e implementation 
assigns properties that satisfy the Euler boundary conditions 
to calculate the inviscid fl uxes, and properties that satisfy the 
Navier-Stokes boundary conditions to calculate the viscous 
fl uxes. Th erefore, the ghost volumes store two diff erent types 
of fl uxes for the correct computation of the RANS equations.

WALL INVISCID BOUNDARY CONDITIONS
Th e ghost cells hold the properties in the same manner to 

calculate the inviscid fl uxes at the wall and at the symmetry 
boundaries. Mass and energy fl uxes should yield zero, and 
the momentum flux is equal to the pressure flux. This is 
accomplished by setting the normal velocity component to the 
boundary face zero. In the present work, the interior domain 

is defi ned as the properties at the left  side of the boundary face 
and the ghost cells are defi ned as the properties at the right 
side of the boundary.

In order to simplify the implementation, the properties 
at the left  side of the boundary face are rotated to the face 
coordinates using

. (48)

Th e vector of conservative properties, Q, is written as

 (49)

In Eq. (48),  is the rotation matrix given by,

 (50)

and the  vectors define the face-based reference 
frame. Th e properties at the ghost cells are set to

 (51)

One can write in the matrix form as

, (52)

in which  is the inviscid wall matrix given by

. (53)

Th erefore, the boundary condition can be written as

, (54)
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in which the R−1 matrix is given by

. (55)

It returns the properties to the Cartesian coordinate frame.

VISCOUS WALL BOUNDARY CONDITION WITH 
SPECIFIED TEMPERATURE

Viscous wall with specifi ed temperature does not have necessarily 
zero heat conduction at the boundary face. For this boundary 
condition the user provides the wall temperature, Twall , and the wall 
pressure is extrapolated from the interior in order to satisfy the zero 
normal wall pressure gradient condition Schlichting (1978). Hence,

 (56)

One can computate the conservative properties at the wall 
boundary using the Cartesian components of the wall velocity, 

 and , which are set by the user. 

 (57)

Th en, the ghost cell conservative properties are calculated using 
an average between the left  and right cells

 (58)

IMPLICIT BOUNDARY CONDITIONS 

Implicit boundary conditions are necessary in order to obtain a 
truly implicit time-marching method. Th e use of explicit boundary 

conditions can limitate substantially the stability of the numerical 
method in the marching procedure for the solution convergence.

BASIC IMPLICIT FORMULATION
A simplified form of the implicit equation, Eq. (42), is 

written in this section in order to detail the implementation of 
implicit boundary conditions for fl ux vector splitting schemes, 

 (59)

where the repeated k index, in the second term in left  hand side 
of the equation, indicates summation over all the k faces of the 
control volume. Th e equation above is written only to present the 
relation between an internal cell, cl, and a boundary cell, cr, k.  
In the original formulation, Eq. (42), the cl-th cell has contributions 
from other faces, which may or may not be boundaries.

As discussed in the present work, the ghost cells hold 
diff erent values for inviscid and viscous calculations. Hence, 
using the splitting defi nition, presented in section Inviscid 
Fluxes Calculation, Eq. (59) can be written as

 (60)

Th e contributions of the boundary face can be expressed in 
terms of the internal cell corrections as

 (61)

Hence, Eq. (60), can be rewritten as

 (62)

Th e viscous Jacobians are calculated using primitive variables, 
then the corrections are set for the primitive variables and applied 
directly at the calculation of the viscous Jacobians. Th e matrix B+

k+ 
already includes the contribution from the boundary. Th e A+

 k+ , 
A−

k- , B
+
 k+ and B−

k- are presented in the work of Scalabrin (2007).
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INVISCID WALL MATRICES FOR IMPLICIT 
BOUNDARY CONDITIONS

Th e matrix for an inviscid wall or for a symmetry boundary 
is the same matrix presented in Eq. (54),

k, inv, wall = -1W . (63)

The matrices are applied to ∆Q for the implicit boundary 
condition according to Eq. (61).

VISCOUS WALL WITH SPECIFIED TEMPERATURE 
MATRIX FOR IMPLICIT BOUNDARY CONDITIONS

Th e viscous Jacobians are created using primitive variables. 
Hence, the implementation of implicit viscous matrices is 
performed using primitive variables. Th ey are applied directly 
at the calculation of the Jacobians matrices.

Th e code was originally created for fl ow simulation with 
chemical reactions, hence the mass fraction, Y , is present in 
the primitive variable vector, which is given by

. (64) 

In the present work, it is always considered that there is only 
one species in the fl ow, then, Y = 1.

Th e implicit  matrix for wall boundary with specifi ed 
temperature is derived from the average between the left  and 
right cells, 

, (65)

in which z is given property. Th e velocity components and 
temperature at the wall are considered constants in time, hence,

. (66)

Th e mass fraction, Y, at the wall, is given by the left  cell value, 
Ywall = Ycl . Th erefore, the implicit matrix for wall boundary 
with specifi ed temperature is given by 

.
 (67)

CONSERVATION ANALYSIS OF 
IMPLICIT METHODS

GENERAL CONSERVATION ANALYSIS
Aft er this brief review, the backward Euler time marching 

method, Eq. (42), is re-written using a simplifi ed notation 

. (68)

The integration is applied on a generic grid, which is a 
representative 2-D fi nite volume mesh using nine quad-cells, 
as illustrated in Fig. 3, in order to present the conservative 
issues of such linearization. Th e [M] matrix, for the mesh used 
here, is represented by 

 (69)

Th e formulation can be considered conservative when the 
sum of Vi ∆Qi

n terms, for all cells, yields zero, i.e.,

, (70)

or yet

. (71)

Solving the linear system for the converged solution, which 
means that Ri

n = 0, one obtains
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 (72)

It is possible to simplify this equation in order to write

, (73)

where the [Ci ] matrix is the sum of the inviscid and viscous 
Jacobian matrices in each column of the [M] matrix. Comparing 
Eqs. (71) and (73), one can easily state that, in order to preserve 
the conservative property of the fi nite volume formulation, the 
[Ci ] matrices should be zero and ∆t should be the same for all 
the cells in the domain, i.e., 

. (74)

POINT IMPLICIT CONSERVATION ANALYSIS 
If one solves the linear system for the same mesh 

presented in Fig. 3 using the point-implicit integration, 
after a converged solution is obtained, i.e., Ri

n = 0, one 
could finally write

 (75)

One can state that, as long the sub-iterations of the point 
implicit method have not achieved the convergence for ∆Qi

p 

and/or ∆t is not the same for all the cells in the domain, it is not 
possible to fi nd a general relation for any ∆ Qi

p and ∆ Qi
p−1 such 

that ∑ [Vi ∆Qi
n ] = 0. Th erefore, the conservation property for 

the point-implicit integration can be achieved only if the [Ci ] 
matrices are zero, the solution of ∆Qi

p for the sub-iterations in 
p is converged, and ∆t is constant over the entire mesh.

However, achieving convergence of the point-implicit sub-
iterations can be as expensive as performing the fully implicit 
integration. Hence, all practical numerical solvers perform a 
limited number of sub-iterations. Th e authors, usually, perform 
up to 10 sub-iterations in p for the point-implicit integration 
and, then, move on to the next time step. Typically, this is 
not enough to achieve convergence for ∆Qi

p, as discussed the 
forthcoming section of the paper.

RESULTS AND DISCUSSION

Results for the so-called “rigid body simulation” problem 
are presented in this section in order to expose the eff ects of 
the time-marching scheme on the mass conservation. Th e rigid 
body problem consists of the simulation of the fl ow contained 
between two concentric cylinders, in which both walls rotate 
at the same angular velocity. Th erefore, aft er convergence, the 
fl uid in the domain is rotating at the same angular velocity 
as if it were a rigid body. Here, the problem is addressed as a 
2-D fl ow. Th e present work performed simulations using the 
point-implicit and the Runge-Kutta time marching methods. 

Figure 3. Representative 2-D fi nite volume mesh.
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An analysis of the use of a constant CFL number on all mesh 
cells is also presented here, in comparison to the use of a constant 
Δt throughout the mesh.

Th e two dimensional geometry and the detailed 360,000 
cell mesh, used in the simulations, are presented in Fig. 4. 
Th e external and internal cylinders are rotating walls with fi xed 
angular velocity, ω, and fi xed temperature, T0. Air with zero 
velocity and T0 temperature are considered as initial conditions. 
All simulations are conducted with the same initial and boundary 
conditions. Each simulation is performed using a diff erent time 
marching method, as presented in Table 1.

Figures 5 and 6 present the total amount of mass (per unit of 
length in the cylinder axial direction) inside the computational 
domain, as a function of the iteration number, for the rigid 
body simulations. It is clear from the fi gures that the point 
implicit time marching method can signifi cantly deteriorate the 
important conservative property of the fi nite volume formulation. 
Moreover, both simulations with the point-implicit time-
marching scheme presented exactly the same non-conservative 
behavior. Moreover, for the point-implicit time integration test 
cases, i.e., test cases 1 and 2, or cases shown in Fig. 5 (a) and (b), 
there is almost no infl uence of the selection of constant CFL 
or of constant ∆t in the time march. In other words, one could 
state that, for these test cases, the non-conservation eff ects of 
using a constant CFL number are far less signifi cant than the 
eff ects of using the point implicit integration. Furthermore, it 
is correct to state that both simulations diverged aft er some 
time (not shown in Fig. 5 (a) and (b).

In contrast to that behavior, simulations performed using 
the explicit Runge-Kutta scheme and a constant time step 
throughout the domain perfectly conserve the mass in the 
computational domain, as one would expect from a fi nite volume 
code. Th e results for this test case (case 4) are shown in Fig. 6 (b). 
On the other hand, results in Fig.6 (a) indicate that, even with an 
explicit scheme, there is no mass conservation if a variable time 
step, or constant CFL number, is used in the time integration. 
Th is is a serious problem since most convergence acceleration 
procedures typically employed in aerospace CFD codes are based 
on the use of implicit integration or on variable time stepping, 
or both. Th e present results are clearly demonstrating that, for 
such cases, there is no mass conservation during the transient 
process of converging to a steady state solution.

Moreover, all results presented in Figs. 5 and 6 reinforce 
the previous analysis performed in this work. To assure the 
conservative property of a time marching method, the [Ci ] 

matrix should be zero. Th is is automatically enforced by the 
explicit integration schemes by construction. Th erefore, for the 
point implicit integration, the convergence of the sub-iterations 
has to be achieved in order to obtain a conservative scheme. 
Furthermore, all the mesh cells have to advance in time using 
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Figure 4. Rigid body geometry and mesh detail.

Table 1. Defi nition of the test case confi gurations for the 
numerical simulations.

Case Time marching scheme Constant ∆t or CFL

1 Point implicit Constant CFL

2 Point implicit Constant ∆t

3 Runge-Kutta Constant CFL

4 Runge-Kutta Constant ∆t
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the same ∆t value in order to maintain the conservative property 
of the finite volume method. This is true even for the explicit 
time marching methods.

CONCLUSIONS

A discussion on the issues associated with the coupling of 
implicit integration methods, for unstructured finite volume 
formulations, with the spatial discretization based on flux vector 
splitting schemes, is presented in this work. The linearization of 
inviscid and viscous Jacobians may result in a non-conservative 
method during the transient phase of the flow simulation, even 
for the finite volume formulation, which is supposed to be 

conservative by construction. The present analysis of the numerical 
formulation and of the computational results obtained has indicated 
that the time integration can be considered conservative only if 
the sum of the Jacobian matrices in each column of the linear 
system matrix is zero and all mesh cells have the same ∆t value. 
Moreover, very popular approximate methods used in many CFD 
codes, to solve sparse linear systems, such as the point implicit 
integration, need to achieve convergence of the sub-iterations 
in order to be conservative during the transient portion of the 
simulation. This is a very expensive proposition and it can make 
such approximate solvers as expensive as those which perform 
the direct solution of the full implicit linear system.

The important conclusion is that care must be exercised in 
the linearization of time-marching methods for simulations 
which demand the conservative property. It is important to 
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Figure 5. Effects of implicit time marching scheme on total 
mass conservation; (a) Constant CFL calculation for point-implicit 
scheme; (b) Constant ∆t calculation for point-implicit scheme.

Figure 6. Effects of explicit time marching scheme on total 
mass conservation; (a) Constant CFL calculation for explicit RK 
scheme; (b) Constant ∆t calculation for explicit RK scheme.
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be aware of the effects of such issue on the physical problem 
of interest. Physical problems with incoming and outcoming 
flow boundary conditions, very common in simulations for 
aerospace applications, do not necessarily need a conservative 
scheme during the transient portion of a steady state calculation. 
The amount of variation in the flow properties, during one time 
step, is negligible compared to the flux of the same properties that 
is crossing the open boundaries of the domain. Moverover, for 
many steady-state external aerodynamic applications, the initial 
conditions are strictly numerical, in the sense that they cannot 
be physically realized as implemented in the solver. In other 
words, they are typically associated to impulsively started flows. 
For such cases, the aspect of the lack of mass conservation in 
the entire computational domain, as the solution evolves from a 
non-physical initial condition to a physically relevant converged 
steady state condition, is not an issue. On the other hand, the 
conservative property is absolutely essential for closed systems, 
in which the total mass, and other properties, must always be 

conserved in order to achieve a physically relevant solution. 
In these critical cases, approximate numerical methods should 
not be used in order to solve the full implicit linear systems.
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ABBREVIATIONS
2-D: Two dimensional
3-D: Three dimensional
CFD: Computational Fluid Dynamics
CFL: Courant-Friedrichs-Lewy number
LeMANS: Le Michigan Aerothermodynamics Navier- Stokes Solver
RANS: Reynolds Averaged Navier-Stokes 
SA: Spalart-Allmaras Tubulence Model 
SW: Sterger-Warming Scheme
TVD: Total Variation Diminishing

LIST OF SYMBOLS
English Characters
a: Speed of the sound
A: Jacobian matrix of the inviscid fl ux 
B: Jacobian matrix of the viscous fl ux 
C: Sum of Jacobian matrices
Cp: Specifi c heat at constant pressure
Cv: Specifi c heat at constant volume
dk: Distance of k-th face to the nearest wall
e: Total energy per unit volume
ei: Internal energy
Fe: Inviscid fl ux vector
Fv: Viscous fl ux vector
îx , îy , îz: Cartesian-coordinate orthonormal vector basis
I: Identity matrix
L: Matrix of eigenvectors from the left
m: Normal vector to the nearest wall
n: Normal vector
nf: Number of faces of a given volume
p: Static pressure
Pr: Prandtl number
qH: Heat transfert vector
Q: Conserved variable vector
R: Matrix of eigenvectors from the right
R: Residue

: Rotation matrix
ℜ: Gas constant
S: Outward-oriented area vector
S: Constant for the Sutherland law equation
t: Time

T: Temperature
v = {u, v, w}: Velocity vector in the cartesian coordinate
V: Volume
V: Primitive variables vector
W: Inviscid wall matrix
w: Switch of the Steger and Warming scheme
Y: Mass fraction

Greek Characters
α: Switch factor
β: Viscous force work and heat transfer term
δij: Kronecker delta

: Implicit matrix
ϵ: Artifi cial dissipation
γ: Ratio of specifi c heats
κ: Thermal conductivity coeffi cient
λ: Eigenvalue of the Jacobian matrix
Λ: Diagonal matrix of the eigenvalues of the Jacobian
µ: Dynamic molecular viscosity coeffi cient
ν: Kinematic molecular viscosity coeffi cient
ρ: Density
τij: Shear-stress tensor

Subscripts
cl: Cell on the left side of the face
cr: Cell on the right side of the face
∞: Free-stream property
inv: Inviscid property
k: Index of the cell face
n: Normal property at a given face
wall: Property at the wall
visc: Viscous property

Superscripts
n: Index of iteration in time
p: Index of iteration for the point-implicit time integration
+: Positive part of a matrix or vector
−: Negative part of a matrix or vector
rot: Rotated property


